in order to create synthetic input data to assess the accuracy of the method, added a function that creates a slope image

This commit is contained in:
Guillaume Raffy 2022-11-28 16:12:08 +01:00
parent 2a256650dc
commit 1088390f41
1 changed files with 38 additions and 0 deletions

38
main.py Executable file
View File

@ -0,0 +1,38 @@
##!/usr/bin/env python3
import numpy as np
import cv2
from pathlib import Path
import math
def create_slope_image(image_width: int, image_height: int, p1_angle: float, p1_radius: float, bg_color: float = 0.0, fg_color: float = 1.0):
"""
creates an image containing 2 regions separated by a line defined as the tangent of a point p1 on a centered circle
the semi-plane the contains the origin of the circle is colored with fg_color, while the other semi plane is assigned pixel values bg_color
"""
slope_image = np.ndarray(shape=(image_height, image_width), dtype=float)
# work out the equation of the tangent in the form a.x + b.y + c = 0
c = np.array([image_height * 0.5, image_width * 0.5])
p1 = c + np.array([math.cos(p1_angle), math.sin(p1_angle)]) * p1_radius
cp1 = p1 - c
a = cp1[0]
b = cp1[1]
c = - p1[0] * cp1[0] - p1[1] * cp1[1]
x = np.tile(np.arange(image_width).reshape((1, image_width)), (image_height, 1))
y = np.tile(np.arange(image_height).reshape((image_height, 1)), (1, image_width))
# print('x=', x)
# print('y=', y)
retval, slope_image = cv2.threshold(x * a + y * b + c, 0.0, fg_color, type=cv2.THRESH_BINARY_INV)
# print('slope_image=', slope_image)
cv2.imwrite('slope.tif', slope_image)
return slope_image
def main():
slope_image = create_slope_image(image_width=128, image_height=256, p1_angle=0.7, p1_radius=3.0)
cv2.imwrite(str(Path('toto.tif')), slope_image)
if __name__ == '__main__':
main()