in order to create synthetic input data to assess the accuracy of the method, added a function that creates a slope image
This commit is contained in:
parent
2a256650dc
commit
1088390f41
|
@ -0,0 +1,38 @@
|
|||
##!/usr/bin/env python3
|
||||
import numpy as np
|
||||
import cv2
|
||||
from pathlib import Path
|
||||
import math
|
||||
|
||||
|
||||
def create_slope_image(image_width: int, image_height: int, p1_angle: float, p1_radius: float, bg_color: float = 0.0, fg_color: float = 1.0):
|
||||
"""
|
||||
creates an image containing 2 regions separated by a line defined as the tangent of a point p1 on a centered circle
|
||||
|
||||
the semi-plane the contains the origin of the circle is colored with fg_color, while the other semi plane is assigned pixel values bg_color
|
||||
"""
|
||||
slope_image = np.ndarray(shape=(image_height, image_width), dtype=float)
|
||||
# work out the equation of the tangent in the form a.x + b.y + c = 0
|
||||
c = np.array([image_height * 0.5, image_width * 0.5])
|
||||
p1 = c + np.array([math.cos(p1_angle), math.sin(p1_angle)]) * p1_radius
|
||||
cp1 = p1 - c
|
||||
a = cp1[0]
|
||||
b = cp1[1]
|
||||
c = - p1[0] * cp1[0] - p1[1] * cp1[1]
|
||||
x = np.tile(np.arange(image_width).reshape((1, image_width)), (image_height, 1))
|
||||
y = np.tile(np.arange(image_height).reshape((image_height, 1)), (1, image_width))
|
||||
# print('x=', x)
|
||||
# print('y=', y)
|
||||
retval, slope_image = cv2.threshold(x * a + y * b + c, 0.0, fg_color, type=cv2.THRESH_BINARY_INV)
|
||||
# print('slope_image=', slope_image)
|
||||
cv2.imwrite('slope.tif', slope_image)
|
||||
return slope_image
|
||||
|
||||
|
||||
def main():
|
||||
slope_image = create_slope_image(image_width=128, image_height=256, p1_angle=0.7, p1_radius=3.0)
|
||||
cv2.imwrite(str(Path('toto.tif')), slope_image)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue