extraction des achats informatiques à partir de commandes-2019-cnrs-t002.tsv : c'est beaucoup plus complet

This commit is contained in:
Guillaume Raffy 2023-01-27 14:31:11 +01:00
parent 6bfc9bf300
commit 9506a106f4
2 changed files with 71 additions and 5 deletions

5
.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
tmp
*.xls
*.xlsx
.~lock*
*.docx

View File

@ -4,7 +4,8 @@ import re
import pandas
def cnrsformat1_to_sheet(in_tsv_file_path: Path, out_tsv_file_path: Path):
# converts a cnrs geslab type t001 report to a single table
def geslabt001_to_sheet(in_tsv_file_path: Path, out_tsv_file_path: Path):
with open(in_tsv_file_path) as inf, open(out_tsv_file_path, 'wt') as outf:
table_header_has_been_written = False
for line in inf.readlines():
@ -25,14 +26,36 @@ def cnrsformat1_to_sheet(in_tsv_file_path: Path, out_tsv_file_path: Path):
outf.write(line)
def main():
cnrsformat1_file_path = Path('./from-cloud.ipr/2019/commandes-2019-cnrs-t001.tsv')
# converts a cnrs geslab type t001 report to a single table
def geslabt002_to_sheet(in_tsv_file_path: Path, out_tsv_file_path: Path):
with open(in_tsv_file_path) as inf, open(out_tsv_file_path, 'wt') as outf:
table_header_has_been_written = False
for line in inf.readlines():
# Entité dépensière : AESJULLIEN AES RENNES METROPOLE MC JULLIEN Crédits reçus : 40,000.00
# Disponible : 24,743.14
#
#
# N° commande Souche Libellé commande Date commande Raison sociale fournisseur Montant consommé sur exercice antérieur Montant consommé sur l'exercice Montant réservé Montant facturé Code origine Nature dépense Statut Cde groupée
is_table_header = re.match(r'^N° com. GESLAB', line) is not None
# for some strange reason, the column 'N° com. GESLAB''s contents are alternatively something like '1952-12-17 12:00:00 AM' and something like '19,855.00'
if is_table_header and not table_header_has_been_written:
outf.write('# %s' % line)
table_header_has_been_written = True
if re.match(r'^[0-9,.]+\t', line):
outf.write(line)
elif re.match(r'^[0-9][0-9][0-9][0-9]-[0-9]+-[0-9]+ [0-9][0-9]:[0-9][0-9]:[0-9][0-9] [AP]M\t', line):
outf.write(line)
else:
print('ignoring line : %s' % line)
def geslabt001_to_itorders(geslabt001_file_path: Path, itorders_file_path: Path):
sheet_file_path = Path('./tmp/commandes-2019-cnrs.tsv')
cnrsformat1_to_sheet(cnrsformat1_file_path, sheet_file_path)
geslabt001_to_sheet(geslabt001_file_path, sheet_file_path)
df = pandas.read_csv(sheet_file_path, sep='\t')
# delete the colums for which the labve is of the form 'Unnamed: <n>'. They come from the csv export of libre office
# delete the colums for which the label is of the form 'Unnamed: <n>'. They come from the csv export of libre office
unnamed_columns = [column_label for column_label in df.keys() if re.match(r'^Unnamed', column_label) is not None]
print(unnamed_columns)
df = df.drop(columns=unnamed_columns)
@ -48,6 +71,44 @@ def main():
print(it_df)
print(it_df[['Montant facturé', 'Raison sociale fournisseur', 'Libellé commande']])
it_df.to_csv(itorders_file_path, sep='\t')
def geslabt002_to_itorders(geslabt001_file_path: Path, itorders_file_path: Path):
sheet_file_path = Path('./tmp/commandes-2019-cnrs.tsv')
geslabt002_to_sheet(geslabt001_file_path, sheet_file_path)
df = pandas.read_csv(sheet_file_path, sep='\t')
# delete the colums for which the labve is of the form 'Unnamed: <n>'. They come from the csv export of libre office
unnamed_columns = [column_label for column_label in df.keys() if re.match(r'^Unnamed', column_label) is not None]
print(unnamed_columns)
df = df.drop(columns=unnamed_columns)
print(df.columns)
print(df.keys())
print(df)
PETIT_MATERIEL_INFORMATIQUE = '1100'
EQUIPEMENT_INFORMATIQUE = '2100'
INFORMATIQUE_ACHAT = 'D3--'
it_df = df[(df['Matière'] == PETIT_MATERIEL_INFORMATIQUE) | (df['Matière'] == EQUIPEMENT_INFORMATIQUE) | (df['Matière'] == INFORMATIQUE_ACHAT)]
print(it_df)
# to remove clutter, drop the columns that we don't need
print(it_df.keys())
it_df = it_df.drop(columns=['# N° com. GESLAB']) # this column seems to contain anything but ordering number
it_df = it_df.drop(columns=['N° ligne']) # I don't know the meaning of this column
it_df = it_df.drop(columns=['Code origine']) # I don't know the meaning of this column
it_df = it_df.drop(columns=['Elément analytique']) # I don't know the meaning of this column
it_df = it_df.drop(columns=['S']) # I don't know the meaning of this column
print(it_df[['Facturé ligne', 'Raison sociale fournisseur', 'Libellé ligne']])
it_df.to_csv(itorders_file_path, sep='\t')
def main():
geslabt001_to_itorders(Path('./achats-ipr/2019/commandes-2019-cnrs-t001.tsv'), Path('./tmp/commandes-it-2019-cnrs-001.tsv'))
geslabt002_to_itorders(Path('./achats-ipr/2019/commandes-2019-cnrs-t002.tsv'), Path('./tmp/commandes-it-2019-cnrs-002.tsv'))
main()