Add kwargs to the pipeline function
The user can now provide a 'pipeline' function with only '**kwargs' in arguments. It is more flexible and easier to write. The 'sweep_index' keyword is always automatically added, so the 'passindex' option has been removed since it was redundant with the index of the final dataframe object. The user-defined 'pipeline' function can now return anything. It is no longer limited to ([x,],[y,]) format.
This commit is contained in:
parent
db6ee27699
commit
feaaabc9c4
|
@ -17,8 +17,8 @@
|
||||||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||||
#
|
#
|
||||||
# Source file : src/msspec/looper.py
|
# Source file : src/msspec/looper.py
|
||||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
# Last modified: Wed, 26 Feb 2025 11:15:54 +0100
|
||||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes.fr>
|
||||||
|
|
||||||
from collections import OrderedDict
|
from collections import OrderedDict
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
@ -92,9 +92,8 @@ class Sweep:
|
||||||
|
|
||||||
|
|
||||||
class SweepRange:
|
class SweepRange:
|
||||||
def __init__(self, *sweeps, passindex=False):
|
def __init__(self, *sweeps):
|
||||||
self.sweeps = sweeps
|
self.sweeps = sweeps
|
||||||
self.passindex = passindex
|
|
||||||
self.index = 0
|
self.index = 0
|
||||||
|
|
||||||
# First check that sweeps that are linked to another on are all included
|
# First check that sweeps that are linked to another on are all included
|
||||||
|
@ -158,7 +157,6 @@ class SweepRange:
|
||||||
for s in [sweep,] + children:
|
for s in [sweep,] + children:
|
||||||
key, value = s[idx]
|
key, value = s[idx]
|
||||||
row[key] = value
|
row[key] = value
|
||||||
if self.passindex:
|
|
||||||
row['sweep_index'] = i
|
row['sweep_index'] = i
|
||||||
return row
|
return row
|
||||||
else:
|
else:
|
||||||
|
@ -166,9 +164,8 @@ class SweepRange:
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def columns(self):
|
def columns(self):
|
||||||
cols = [sweep.key for sweep in self.sweeps]
|
cols = ['sweep_index']
|
||||||
if self.passindex:
|
cols += [sweep.key for sweep in self.sweeps]
|
||||||
cols.append('sweep_index')
|
|
||||||
return cols
|
return cols
|
||||||
|
|
||||||
@property
|
@property
|
||||||
|
@ -202,31 +199,27 @@ class Looper:
|
||||||
logger.debug("Pipeline called with {}".format(x))
|
logger.debug("Pipeline called with {}".format(x))
|
||||||
return self.pipeline(**x)
|
return self.pipeline(**x)
|
||||||
|
|
||||||
def run(self, *sweeps, ncpu=1, passindex=False):
|
def run(self, *sweeps, ncpu=1, **kwargs):
|
||||||
logger.info("Loop starts...")
|
logger.info("Loop starts...")
|
||||||
# prepare the list of inputs
|
# prepare the list of inputs
|
||||||
sr = SweepRange(*sweeps, passindex=passindex)
|
sr = SweepRange(*sweeps)
|
||||||
items = sr.items
|
items = sr.items
|
||||||
|
|
||||||
data = []
|
data = []
|
||||||
|
|
||||||
|
t0 = time.time()
|
||||||
|
|
||||||
if ncpu == 1:
|
if ncpu == 1:
|
||||||
# serial processing...
|
# serial processing...
|
||||||
logger.info("serial processing...")
|
logger.info("serial processing...")
|
||||||
t0 = time.time()
|
|
||||||
|
|
||||||
for i, values in enumerate(items):
|
for i, values in enumerate(items):
|
||||||
|
values.update(kwargs)
|
||||||
result = self._wrapper(values)
|
result = self._wrapper(values)
|
||||||
data.append(result)
|
data.append(result)
|
||||||
|
|
||||||
t1 = time.time()
|
|
||||||
dt = t1 - t0
|
|
||||||
logger.info("Processed {:d} sets of inputs in {:.3f} seconds".format(
|
|
||||||
len(sr), dt))
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Parallel processing...
|
# Parallel processing...
|
||||||
chunksize = 1 #int(nsets/ncpu)
|
chunksize = 1 #int(nsets/ncpu)
|
||||||
|
[values.update(kwargs) for values in items]
|
||||||
logger.info(("Parallel processing over {:d} cpu (chunksize={:d})..."
|
logger.info(("Parallel processing over {:d} cpu (chunksize={:d})..."
|
||||||
"").format(ncpu, chunksize))
|
"").format(ncpu, chunksize))
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
@ -243,14 +236,16 @@ class Looper:
|
||||||
|
|
||||||
# Create the DataFrame
|
# Create the DataFrame
|
||||||
dfdata = []
|
dfdata = []
|
||||||
columns = sr.columns + ['output',]
|
columns = sr.columns + list(kwargs.keys()) + ['output',]
|
||||||
|
|
||||||
for i in range(len(sr)):
|
for i in range(len(sr)):
|
||||||
row = list(items[i].values())
|
row = list(items[i].values())
|
||||||
row.append(data[i])
|
row.append(data[i])
|
||||||
dfdata.append(row)
|
dfdata.append(row)
|
||||||
|
|
||||||
|
|
||||||
df = pd.DataFrame(dfdata, columns=columns)
|
df = pd.DataFrame(dfdata, columns=columns)
|
||||||
|
df = df.drop(columns=['sweep_index'])
|
||||||
|
|
||||||
self.data = df
|
self.data = df
|
||||||
|
|
||||||
|
@ -259,14 +254,14 @@ class Looper:
|
||||||
# of corresponding dict of parameters {'keyA': [val0,...valn],
|
# of corresponding dict of parameters {'keyA': [val0,...valn],
|
||||||
# 'keyB': [val0,...valn], ...}
|
# 'keyB': [val0,...valn], ...}
|
||||||
|
|
||||||
all_xy = []
|
# all_xy = []
|
||||||
for irow, row in df.iterrows():
|
# for irow, row in df.iterrows():
|
||||||
all_xy.append(row.output[0])
|
# all_xy.append(row.output[0])
|
||||||
all_xy.append(row.output[1])
|
# all_xy.append(row.output[1])
|
||||||
parameters = df.to_dict()
|
# parameters = df.to_dict()
|
||||||
parameters.pop('output')
|
# parameters.pop('output')
|
||||||
|
|
||||||
return all_xy, parameters
|
return self.data #all_xy, parameters
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -276,17 +271,16 @@ class Looper:
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import time
|
import time
|
||||||
|
import logging
|
||||||
|
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.DEBUG)
|
||||||
|
|
||||||
logger.setLevel(logging.DEBUG)
|
|
||||||
|
|
||||||
|
|
||||||
def bar(**kwargs):
|
def bar(**kwargs):
|
||||||
return 0
|
i = kwargs.get('sweep_index')
|
||||||
|
return np.linspace(0,i,10)
|
||||||
def post_process(data):
|
|
||||||
x = data.x.unique()
|
|
||||||
y = data.y.unique()
|
|
||||||
|
|
||||||
|
|
||||||
theta = Sweep(key='theta', comments="The polar angle",
|
theta = Sweep(key='theta', comments="The polar angle",
|
||||||
start=-70, stop=70, num=3,
|
start=-70, stop=70, num=3,
|
||||||
|
@ -314,7 +308,16 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
looper = Looper()
|
looper = Looper()
|
||||||
looper.pipeline = bar
|
looper.pipeline = bar
|
||||||
data = looper.run(emitter, emitter_plane, uij, theta, levels, ncpu=4,
|
other_kws = {'un':1, 'deux':2}
|
||||||
passindex=True)
|
data = looper.run(emitter, emitter_plane, uij, theta, levels, ncpu=4, **other_kws)
|
||||||
|
|
||||||
|
# Print the dataframe
|
||||||
print(data)
|
print(data)
|
||||||
#print(data[data.emitter_plane.eq(0)].theta.unique())
|
|
||||||
|
# Accessing the parameters and ouput values for a given sweep (e.g the last one)
|
||||||
|
print(looper.data.iloc[-1])
|
||||||
|
|
||||||
|
# Post-process the output values. For example here, the output is a 1D-array,
|
||||||
|
# make the sum of sweeps with 'Sr' emitter
|
||||||
|
X = np.array([ x for x in data[data.emitter == 'Sr'].output]).sum(axis=0)
|
||||||
|
print(X)
|
||||||
|
|
Loading…
Reference in New Issue