For spectrocopy EIG, added the possibility of using Arnoldi iteration techniques

implemented in ARPACK for calculating a subset of eigenvalues rather than all of
them or just the largest one.

This is invoked by setting algorithm='arnoldi' in the constructor MSSPEC.

    calc = MSSPEC(spectroscopy='EIG', algorithm='arnoldi')

This version finds NEV eigenvalues with the largest magnitudes. The value of
NEV is set in the code to be 2% of the total number. The algorithm also sets
the number of basis vectors, NCV, to be 2*NEV. Options for allowing the user
to set these values as well as other convergence criteria should be added in
later versions.

Files src/msspec/calculator.py and src/msspec/parameters.py have been modified
to accept algorithm='arnoldi'.

A new directory, src/msspec/spec/fortran/eig/ar, has been created and contains
various Fortran files implementing the Arnoldi iteration. Some files are written
in Fortran90 free-format and use some features of the Fortran 2003 standard.

Compilation requires the ARPACK library to be installed and accessible using -larpack

Compilation rules and options have been introduced/modified where necessary in the
files src/options.mk, src/msspec/spec/fortran/Makefile and
src/msspec/spec/fortran/eig_ar.mk

This version has been tested for the CaO example.
This commit is contained in:
kmdunseath 2023-06-29 11:11:49 +02:00
parent f5a2b9779c
commit deb350a520
10 changed files with 2259 additions and 7 deletions

View File

@ -95,6 +95,7 @@ from msspec.parameters import TMatrixParameters
from msspec.phagen.fortran.libphagen import main as do_phagen
from msspec.spec.fortran import _eig_mi
from msspec.spec.fortran import _eig_pw
from msspec.spec.fortran import _eig_ar
from msspec.spec.fortran import _phd_mi_noso_nosp_nosym
from msspec.spec.fortran import _phd_se_noso_nosp_nosym
from msspec.spec.fortran import _phd_ce_noso_nosp_nosym
@ -418,6 +419,8 @@ class _MSCALCULATOR(Calculator):
do_spec = _eig_mi.run
elif self.global_parameters.algorithm == 'power':
do_spec = _eig_pw.run
elif self.global_parameters.algorithm == 'arnoldi':
do_spec = _eig_ar.run
else:
LOGGER.error("\'{}\' spectroscopy with \'{}\' algorithm is not "
"an allowed combination.".format(self.global_parameters.spectroscopy,
@ -986,8 +989,8 @@ class _EIG(_MSCALCULATOR):
_MSCALCULATOR.__init__(self, spectroscopy='EIG', algorithm=algorithm,
polarization=polarization, dichroism=dichroism,
spinpol=spinpol, folder=folder, txt=txt)
if algorithm not in ('inversion', 'power'):
LOGGER.error("Only the 'inversion' or the 'power' algorithms "
if algorithm not in ('inversion', 'power', 'arnoldi'):
LOGGER.error("Only the 'inversion', 'power' or 'arnoldi' algorithms "
"are supported in EIG spectroscopy mode")
exit(1)
self.iodata = iodata.Data('EIG Simulation')

View File

@ -770,7 +770,8 @@ class GlobalParameters(BaseParameters):
Parameter('algorithm', types=str, allowed_values=('expansion',
'inversion',
'correlation',
'power'),
'power',
'arnoldi'),
default='expansion', doc="""
You can choose the algorithm used for the computation of the scattering path operator.
@ -778,6 +779,7 @@ class GlobalParameters(BaseParameters):
- '**expansion**', for the Rehr-Albers series expansion
- '**correlation**', for the correlation-expansion algorithm
- '**power**', for the power method approximation scheme (only for spectroscopy='EIG')
- '**arnoldi**', for computing multiple eigenvalues using Arnoldi iteration (only for spectroscopy='EIG')
The series expansion algorithm is well suited for high energy since the number of terms
required decreases as the energy increases. The exact solution is obtained by the matrix inversion

View File

@ -1,6 +1,6 @@
.PHONY: all phd_se phd_mi phd_ce eig_mi eig_pw comp_curve clean
.PHONY: all phd_se phd_mi phd_ce eig_mi eig_pw eig_ar comp_curve clean
all: phd_se phd_mi phd_ce eig_mi eig_pw comp_curve
all: phd_se phd_mi phd_ce eig_mi eig_pw eig_ar comp_curve
phd_se:
@+$(MAKE) -f phd_se_noso_nosp_nosym.mk all
@ -17,6 +17,9 @@ eig_mi:
eig_pw:
@+$(MAKE) -f eig_pw.mk all
eig_ar:
@+$(MAKE) -f eig_ar.mk all
comp_curve:
@+$(MAKE) -f comp_curve.mk all
@ -26,4 +29,5 @@ clean::
@+$(MAKE) -f phd_ce_noso_nosp_nosym.mk $@
@+$(MAKE) -f eig_mi.mk $@
@+$(MAKE) -f eig_pw.mk $@
@+$(MAKE) -f eig_ar.mk $@
@+$(MAKE) -f comp_curve.mk $@

View File

@ -0,0 +1,249 @@
!==============================================================================!
module arnoldi_mod
!==============================================================================!
implicit none
private
!
integer, parameter :: sp = kind(1.0)
integer, parameter :: dp = kind(1.0d0)
integer, parameter :: zp = kind((0.0d0,0.0d0))
!
complex(zp), parameter :: one = complex(1.0d0, 0.0d0)
complex(zp), parameter :: zero = complex(0.0d0, 0.0d0)
!
! Public procedures
!
public :: arnoldi_iteration
!
! Private data
!
! ARPACK's debug common block
!
integer :: logfil = 6, ndigit = -3, mcaupd = 1
integer :: mgetv0 = 0, msaupd = 0, msaup2 = 0, msaitr = 0, mseigt = 0, &
msapps = 0, msgets = 0, mseupd = 0, mnaupd = 0, mnaup2 = 0, &
mnaitr = 0, mneigh = 0, mnapps = 0, mngets = 0, mneupd = 0, &
mcaup2 = 0, mcaitr = 0, mceigh = 0, mcapps = 0, mcgets = 0, &
mceupd = 0
!
common /debug/ logfil, ndigit, mgetv0, msaupd, msaup2, msaitr, mseigt, &
msapps, msgets, mseupd, mnaupd, mnaup2, mnaitr, mneigh, &
mnapps, mngets, mneupd, mcaupd, mcaup2, mcaitr, mceigh, &
mcapps, mcgets, mceupd
!==============================================================================!
contains
!==============================================================================!
! Public procedures
!==============================================================================!
subroutine arnoldi_iteration (ndim, a, nev, d)
!
! Use ARPACK routines to find a few eigenvalues (lambda) and corresponding
! eigenvectors (x) for the standard eigenvalue problem:
!
! A*x = lambda*x
!
! where A is a general NDIM by NDIM complex matrix
!
! This subroutine is based on an ARPACK test program adapted by Logan Boudet
! as part of his M1 project in Rennes in 2022.
!
integer, intent(in) :: ndim
complex(zp), intent(in) :: a(:,:)
integer, intent(inout) :: nev ! number of eigenvalues required
complex(zp), intent(out) :: d(:) ! vector of required eigenvalues
!
! Local data
!
character(1), parameter :: bmat = "I" ! standarg eigenvalue problem
character(2), parameter :: which = "LM" ! find NEV eigenvalues of
! ! largest magnitude
!
integer :: ido, ierr, info, j, lworkl, nconv, ncv
integer :: iparam(11)
integer :: ipntr(14)
real(dp) :: tol
complex(zp) :: sigma
logical :: rvec
!
real(dp), allocatable :: rd(:,:)
real(dp), allocatable :: rwork(:)
complex(zp), allocatable :: ax(:)
complex(zp), allocatable :: resid(:)
complex(zp), allocatable :: v(:,:)
complex(zp), allocatable :: workd(:)
complex(zp), allocatable :: workev(:)
complex(zp), allocatable :: workl(:)
logical, allocatable :: select(:)
!
! External BLAS/LAPACK functions used
!
real(dp), external :: dznrm2, dlapy2
!
!
write(6,*) "----------------- BEGIN OF ARNOLDI ITERATION -----------------"
!
! NCV is is the largest number of basis vectors that will be used in the
! Implicitly Restarted Arnoldi Process. Work per major iteration is
! proportional to NDIM*NCV*NCV.
!
! Note: we must have NCV >= NEV + 2, and preferably NCV >= 2*NEV
!
! ncv = max(ceiling(1.125*nev + 15), nev+3)
ncv = 2*nev
!
iparam(11) = 0
ipntr(14) = 0
!
! stopping criteria; machine precision is used if tol <= 0
!
tol = 0.0_dp
!
! Algorithm mode
!
iparam(1) = 1 ! exact shift strategy
iparam(3) = 300 ! maximum number of iterations
iparam(7) = 1 ! use mode1 of ZNAUPD
!
lworkl = ncv*(3*ncv + 5)
allocate(rwork(ncv))
allocate(resid(ndim), v(ndim,ncv))
allocate(workd(3*ndim), workev(2*ncv), workl(lworkl))
allocate(select(ncv))
!
! IDO is the reverse communication parameter used to determine action to be taken
! on return from ZNAUPD. Its initial value must be 0.
!
ido = 0
!
! On entry, INFO == 0 instructs ZNAUPD to use a random starting vector.
! To specify a particular starting vector, set INFO to a non-zero value.
! The required startng vector should then be supplied in RESID.
!
info = 0
!
! Main reverse communication loop
!
do
call znaupd(ido, bmat, ndim, which, nev, tol, resid, ncv, v, ndim, &
iparam, ipntr, workd, workl, lworkl, rwork, info)
if (abs(ido) /= 1) exit
!
! Matrix-vector multiplication y = A*x
! Initial vector x is stored starting at workd(ipntr(1))
! The result y should be stored in workd(ipntr(2))
!
call matvec(a, ndim, ndim, workd(ipntr(1)), workd(ipntr(2)))
!
end do
!
if (info < 0) then
write(6,*)
write(6,*) "Error: znaupd returned info = ", info
write(6,*) "Check the documentation of znaupd for more information"
write(6,*)
stop
end if
!
! No fatal errors, post-process with ZNEUPD to extract computed eigenvalues.
! Eigenvectors may be also computed by setting RVEC = .TRUE.)
!
if (info == 1) then
write(6,*)
write(6,*) "Maximum number of iterations reached."
write(6,*)
else if (info == 3) then
write(6,*)
write(6,*) "No shifts could be applied during implicit Arnoldi update"
write(6,*) "Try increasing NCV."
write(6,*)
end if
!
rvec = .false.
!
call zneupd(rvec, 'A', select, d, v, ndim, sigma, workev, bmat, ndim, &
which, nev, tol, resid, ncv, v, ndim, iparam, ipntr, workd, &
workl, lworkl, rwork, ierr)
!
if (ierr /= 0) then
write(6,*)
write(6,*) "Error: zneupd returned ierr = ", ierr
write(6,*) "Check the documentation of zneupd for more information"
write(6,*)
stop
end if
!
! Eigenvalues are returned in the one dimensional array D and if RVEC == .TRUE.
! the corresponding eigenvectors are returned in the first NCONV == IPARAM(5)
! columns of the two dimensional array V
!
nconv = iparam(5)
!
if (rvec) then
!
! Compute the residual norm || A*x - lambda*x || for the NCONV accurately
! computed eigenvalues and eigenvectors
!
allocate(rd(ncv,3), ax(ndim))
!
do j = 1, nconv
call matvec(a, ndim, ndim, v(:,j), ax)
call zaxpy(ndim, -d(j), v(:,j), 1, ax, 1)
rd(j,1) = real(d(j), dp)
rd(j,2) = aimag(d(j))
rd(j,3) = dznrm2(ndim, ax, 1) / dlapy2(rd(j,1), rd(j,2))
end do
!
call dmout(6, nconv, 3, rd, 2*nev, -6, &
"Ritz values (Real, Imag) and relative residuals")
!
deallocate(rd, ax)
!
end if
!
write(6,*)
write(6,*) "SUMMARY"
write(6,*) "======="
write(6,*)
write(6,*) "Size of the matrix is ", ndim
write(6,*) "The number of Ritz values requested is ", nev
write(6,*) "The number of Arnoldi vectors generated (NCV) is ", ncv
write(6,*) "Portion of the spectrum: ", which
write(6,*) "The number of converged Ritz values is ", nconv
write(6,*) "The number of implicit Arnoldi update iterations taken is ", iparam(3)
write(6,*) "The number of OP*x is ", iparam(9)
write(6,*) "The convergence criterion is ", tol
write(6,*)
!
nev = nconv
!
write(6,*) "------------------ END OF ARNOLDI ITERATION ------------------"
!
deallocate(rwork)
deallocate(resid, v)
deallocate(workd, workev, workl)
deallocate(select)
!
return
end subroutine arnoldi_iteration
!==============================================================================!
! Private procedures
!==============================================================================!
subroutine matvec (a, n, lda, x, y)
!
! Compute the matrix-vector product a*x, storing the result in y
!
complex(zp), intent(in) :: a(:,:)
integer, intent(in) :: n
integer, intent(in) :: lda
complex(zp), intent(in) :: x(*)
complex(zp), intent(out) :: y(*)
!
!
call zgemv('n', n, n, one, a, lda, x, 1, zero, y, 1)
!
return
end subroutine matvec
!==============================================================================!
end module arnoldi_mod
!==============================================================================!

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,291 @@
!==============================================================================!
subroutine eig_mat_ar (je, e_kin)
!==============================================================================!
! This subroutine stores the G_o T kernel matrix and computes a subset of the
! the eigenvalues with largest magnitude using Arnoldi iteration methods from
! ARPACK
!
use dim_mod, only: n_gaunt, nl_m
use coor_mod, only: natyp, ncorr, n_prot, sym_at
use outfiles_mod, only: outfile2
use outunits_mod, only: iuo1, iuo2
use trans_mod, only: lmax, vk, tl
!
use arnoldi_mod, only: arnoldi_iteration
!
implicit none
!
integer, parameter :: sp = kind(1.0)
integer, parameter :: dp = kind(1.0d0)
integer, parameter :: cp = kind((0.0,0.0))
integer, parameter :: zp = kind((0.0d0,0.0d0))
!
! Subroutine arguments
!
integer, intent(in) :: je
real(sp), intent(in) :: e_kin
!
! Local data
!
integer, parameter :: ibess = 3
integer, parameter :: nprint = 10
real(dp), parameter :: pi = acos(-1.0_dp)
real(dp), parameter :: small = 0.0001_dp
complex(zp), parameter :: ic = complex(0.0d0,1.0d0)
complex(zp), parameter :: zeroc = complex(0.0d0,0.0d0)
complex(zp), parameter :: four_pi_i = 4.0_dp*pi*ic
!
integer :: jatl, jlin, jtyp, jnum, lj, lmj, mj, nbtypj
integer :: katl, klin, ktyp, knum, lk, lmk, mk, nbtypk
integer :: j, jp, l, lin, l_max, l_min, m
integer :: ndim, n_dot, n_eig, nev, nfin, nltwo, npr, n_xmax
real(sp) :: eig, xj, yj, zj, xmax_l
real(dp) :: attkj, xkj, ykj, zkj, rkj, zdkj, krkj
complex(zp) :: expkj, sum_l, tlk
!
integer, save :: iout2, iout3
!
real(sp), allocatable :: w1(:), w2(:)
real(dp), allocatable :: gnt(:)
complex(zp), allocatable :: hl1(:), sm(:,:), ylm(:,:), w(:)
character(:), allocatable :: outfile, path
!
!
if (je == 1) then
!
! Name of second output file where eigenvalues will be written
!
n_dot = index(outfile2, '.')
outfile = outfile2(1:n_dot)//'egv'
path = outfile2(1:n_dot)//'pth'
open(newunit=iout2, file=outfile, status='unknown')
open(newunit=iout3, file=path, status='unknown')
!
end if
!
! Construction of the multiple scattering kernel matrix G_o T.
! Elements are stored using a linear index LINJ representing (J,LJ)
!
! First compute Go T array dimension
!
jlin = 0
do jtyp = 1, n_prot
nbtypj = natyp(jtyp)
lmj = lmax(jtyp,je)
do jnum = 1, nbtypj
do lj = 0, lmj
do mj = -lj, lj
jlin = jlin + 1
end do
end do
end do
end do
!
ndim = jlin
write(6,*) "GoT matrix sm has dimension ", ndim
!
allocate(sm(ndim,ndim))
sm = zeroc
!
nltwo = 2*nl_m
allocate(ylm(0:nltwo, -nltwo:nltwo))
ylm = zeroc
!
allocate(hl1(0:nltwo))
hl1 = zeroc
!
allocate(gnt(0:n_gaunt))
gnt = 0.0_dp
!
jlin = 0
do jtyp = 1, n_prot
nbtypj = natyp(jtyp)
lmj = lmax(jtyp,je)
do jnum = 1, nbtypj
jatl = ncorr(jnum,jtyp)
xj = sym_at(1,jatl)
yj = sym_at(2,jatl)
zj = sym_at(3,jatl)
do lj = 0, lmj
do mj = -lj, lj
jlin = jlin + 1
!
klin=0
do ktyp = 1, n_prot
nbtypk = natyp(ktyp)
lmk = lmax(ktyp,je)
do knum = 1, nbtypk
katl = ncorr(knum,ktyp)
!
if (katl /= jatl) then
xkj = real(sym_at(1,katl) - xj, dp)
ykj = real(sym_at(2,katl) - yj, dp)
zkj = real(sym_at(3,katl) - zj, dp)
rkj = sqrt(xkj*xkj + ykj*ykj + zkj*zkj)
krkj = real(vk(je), dp)*rkj
attkj = exp(-aimag(cmplx(vk(je)))*rkj)
expkj = (xkj + ic*ykj)/rkj
zdkj = zkj/rkj
call sph_har2(2*nl_m, zdkj, expkj, ylm, lmj+lmk)
call besphe2(lmj+lmk+1, ibess, krkj, hl1)
end if
!
do lk = 0,lmk
l_min = abs(lk-lj)
l_max = lk + lj
tlk = cmplx(tl(lk,1,ktyp,je))
do mk = -lk, lk
klin = klin + 1
!
sm(klin,jlin) = zeroc
sum_l = zeroc
if (katl /= jatl) then
call gaunt2(lk, mk, lj, mj, gnt)
do l = l_min, l_max, 2
m = mj - mk
if (abs(m) <= l) then
sum_l = sum_l + (ic**l)*hl1(l)*ylm(l,m)*gnt(l)
end if
end do
sum_l = sum_l*attkj*four_pi_i
else
sum_l = zeroc
end if
!
sm(klin,jlin) = tlk*sum_l
!
end do
end do
end do
end do
end do
end do
end do
end do
!
deallocate(ylm, hl1, gnt)
!
! Compute subset of eigenvalues of SM using ARPACK
!
! NEV is the number of eigenvalues required, set to 2% of NDIM
!
nev = ceiling(0.02*ndim)
allocate(w(nev))
!
call arnoldi_iteration(ndim, sm, nev, w)
!
deallocate(sm)
!
! Save results to filestream for easy access from python
!
call save_eigenvalues(w, nev, e_kin)
!
! Write results to OUTFILE on unit IOUT2
!
write(iout2,75)
write(iout2,110)
write(iout2,80) e_kin
write(iout2,110)
write(iout2,75)
write(iout2,105)
write(iout2,75)
!
allocate(w1(nev), w2(nev))
!
n_eig = 0
xmax_l = 0.0
n_xmax = 0
do lin = 1, nev
eig = real(abs(w(lin)))
write(iout2,100) real(w(lin)), aimag(w(lin)), eig
if ((eig-xmax_l) > 0.0001) n_xmax = lin
xmax_l = max(xmax_l, eig)
w1(lin) = eig
if (eig > 1.000) then
n_eig = n_eig + 1
end if
end do
!
write(iout2,75)
write(iout2,85) xmax_l
write(iout2,90) n_xmax
write(iout2,95) w(n_xmax)
write(iout2,75)
!
! Summarize results in main output file
!
call ordre(nev, w1, nfin, w2)
!
write(iuo1,5)
write(iuo1,10)
write(iuo1,10)
write(iuo1,15) w2(1)
write(iuo1,20) w2(nfin)
write(iuo1,10)
write(iuo1,10)
!
if (n_eig >= 1) then
if (n_eig == 1) then
write(iuo1,25) ndim
else
write(iuo1,30) n_eig, ndim
end if
end if
!
write(iuo1,65) n_xmax
write(iuo1,70) w(n_xmax)
write(iuo1,10)
write(iout3,100) real(w(n_xmax)), aimag(w(n_xmax))
!
npr = nprint/5
write(iuo1,10)
write(iuo1,10)
write(iuo1,35) 5*npr
write(iuo1,10)
do jp = 0, npr-1
j = 5*jp
write(iuo1,40) w2(j+1), w2(j+2), w2(j+3), w2(j+4), w2(j+5)
enddo
write(iuo1,10)
write(iuo1,10)
write(iuo1,45) w2(1)
write(iuo2,*) e_kin, w2(1)
if (n_eig == 0) then
write(iuo1,50)
else
write(iuo1,55)
end if
write(iuo1,10)
write(iuo1,10)
write(iuo1,60)
!
deallocate(w, w1, w2)
!
return
!
5 format(/,11X,'----------------- EIGENVALUE ANALYSIS ','-----------------')
10 format(11X,'-',54X,'-')
15 format(11X,'-',14X,'MAXIMUM MODULUS : ',F9.6,13X,'-')
20 format(11X,'-',14X,'MINIMUM MODULUS : ',F9.6,13X,'-')
25 format(11X,'-',6X,'1 EIGENVALUE IS > 1 OF A TOTAL OF ',I8,6X,'-')
30 format(11X,'-',4X,I5,' EIGENVALUES ARE > 1 OF A TOTAL OF ',I8,2X,'-')
35 format(11X,'-',11X,'THE ',I3,' LARGEST EIGENVALUES ARE :',11X,'-')
40 format(11X,'-',6X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,2X,F7.4,5X,'-')
45 format(11X,'-',4X,'SPECTRAL RADIUS OF THE KERNEL MATRIX : ',F8.5,3X,'-')
50 format(11X,'-',5X,'---> THE MULTIPLE SCATTERING SERIES ','CONVERGES',4X,'-')
55 format(11X,'-',10X,'---> NO CONVERGENCE OF THE MULTIPLE',9X,'-',/,11X,'-', &
18X,'SCATTERING SERIES',19X,'-')
60 format(11X,'----------------------------------------','----------------',/)
65 format(11X,'-',5X,' LABEL OF LARGEST EIGENVALUE : ',I5,8X,'-')
70 format(11X,'-',5X,' LARGEST EIGENVALUE : ','(',F6.3,',',F6.3,')',8X,'-')
75 format(' ')
80 format(' KINETIC ENERGY : ',F7.2,' eV')
85 format(' LARGEST MODULUS OF EIGENVALUE : ',F6.3)
90 format(' LABEL OF LARGEST EIGENVALUE : ',I5)
95 format(' LARGEST EIGENVALUE : (',F6.3,',',F6.3,')')
100 format(5X,F9.5,2X,F9.5,2X,F9.5)
105 format(7X,'EIGENVALUES :',3X,'MODULUS :')
110 format(2X,'-------------------------------')
!==============================================================================!
end subroutine eig_mat_ar
!==============================================================================!

View File

@ -0,0 +1,103 @@
C
C=======================================================================
C
SUBROUTINE EIGDIF_AR
C
C This subroutine computes some of the eigenvalues of the
C multiple scattering matrix using Arnoldi iteration as
C implemented in ARPACK.
C
C Last modified : 21 June 2023
C
C INCLUDE 'spec.inc'
USE DIM_MOD
USE CONVTYP_MOD
USE COOR_MOD, NTCLU => NATCLU, NTP => NATYP
USE DEBWAL_MOD
USE EIGEN_MOD, NE => NE_EIG, E0 => E0_EIG, EFIN => EFIN_EIG
USE OUTFILES_MOD
USE OUTUNITS_MOD
USE RESEAU_MOD
USE TESTS_MOD
USE TRANS_MOD
USE VALIN_MOD, E1 => E0, PHLUM => PHILUM
C
COMPLEX IC,ONEC
COMPLEX TLT(0:NT_M,4,NATM,NE_M)
C
C
DATA CONV /0.512314/
C
IC=(0.,1.)
ONEC=(1.,0.)
C
OPEN(UNIT=IUO2, FILE=OUTFILE2, STATUS='UNKNOWN')
C
C Loop over the energies
C
DO JE=1,NE
IF(NE.GT.1) THEN
ECIN=E0+FLOAT(JE-1)*(EFIN-E0)/FLOAT(NE-1)
ELSEIF(NE.EQ.1) THEN
ECIN=E0
ENDIF
CALL LPM(ECIN,XLPM,*6)
XLPM1=XLPM/A
IF(IPRINT.GT.0) WRITE(IUO1,56) A,XLPM1
IF(ITL.EQ.0) THEN
VK(JE)=SQRT(ECIN+VINT)*CONV*A*ONEC
VK2(JE)=CABS(VK(JE)*VK(JE))
ENDIF
GAMMA=1./(2.*XLPM1)
IF(IPOTC.EQ.0) THEN
VK(JE)=VK(JE)+IC*GAMMA
ENDIF
IF(I_MFP.EQ.0) THEN
VK(JE)=CMPLX(REAL(VK(JE)))
VK2(JE)=CABS(VK(JE)*VK(JE))
ENDIF
IF(I_VIB.EQ.1) THEN
IF(IDCM.GE.1) WRITE(IUO1,22)
DO JAT=1,N_PROT
IF(IDCM.EQ.0) THEN
XK2UJ2=VK2(JE)*UJ2(JAT)
ELSE
XK2UJ2=VK2(JE)*UJ_SQ(JAT)
WRITE(IUO1,23) JAT,UJ_SQ(JAT)*A*A
ENDIF
CALL DWSPH(JAT,JE,XK2UJ2,TLT,I_VIB)
DO LAT=0,LMAX(JAT,JE)
TL(LAT,1,JAT,JE)=TLT(LAT,1,JAT,JE)
ENDDO
ENDDO
ENDIF
C
C Eigenvalue calculation
C
ckmd IF(I_PWM.EQ.0) THEN
ckmd CALL EIG_MAT_MS(JE,ECIN)
ckmd ELSE
ckmd CALL SPEC_RAD_POWER(JE,ECIN)
ckmd ENDIF
C
call eig_mat_ar(je, ecin)
C
C
C End of the loop on the energy
C
ENDDO
GOTO 7
C
6 WRITE(IUO1,55)
C
22 FORMAT(16X,'INTERNAL CALCULATION OF MEAN SQUARE DISPLACEMENTS',/,
&25X,' BY DEBYE UNCORRELATED MODEL:',/)
23 FORMAT(21X,'ATOM TYPE ',I5,' MSD = ',F8.6,' ANG**2')
55 FORMAT(///,12X,' <<<<<<<<<< THIS VALUE OF ILPM IS NOT',
&'AVAILABLE >>>>>>>>>>')
56 FORMAT(4X,'LATTICE PARAMETER A = ',F6.3,' ANGSTROEMS',4X,
*'MEAN FREE PATH = ',F6.3,' * A',//)
C
7 RETURN
C
END

View File

@ -0,0 +1,22 @@
SUBROUTINE RUN(NATP_M_, NATCLU_M_, NAT_EQ_M_, N_CL_L_M_,
& NE_M_, NL_M_, LI_M_, NEMET_M_, NO_ST_M_, NDIF_M_, NSO_M_,
& NTEMP_M_, NODES_EX_M_, NSPIN_M_, NTH_M_, NPH_M_, NDIM_M_,
& N_TILT_M_, N_ORD_M_, NPATH_M_, NGR_M_)
USE DIM_MOD
IMPLICIT INTEGER (A-Z)
CF2PY INTEGER, INTENT(IN,COPY) :: NATP_M_, NATCLU_M_, NAT_EQ_M_, N_CL_L_M_
CF2PY INTEGER, INTENT(IN,COPY) :: NE_M_, NL_M_, LI_M_, NEMET_M_, NO_ST_M_, NDIF_M_, NSO_M_
CF2PY INTEGER, INTENT(IN,COPY) :: NTEMP_M_, NODES_EX_M_, NSPIN_M_, NTH_M_, NPH_M_, NDIM_M_
CF2PY INTEGER, INTENT(IN,COPY) :: N_TILT_M_, N_ORD_M_, NPATH_M_, NGR_M_
CALL ALLOCATION(NATP_M_, NATCLU_M_, NAT_EQ_M_, N_CL_L_M_,
& NE_M_, NL_M_, LI_M_, NEMET_M_, NO_ST_M_, NDIF_M_, NSO_M_,
& NTEMP_M_, NODES_EX_M_, NSPIN_M_, NTH_M_, NPH_M_, NDIM_M_,
& N_TILT_M_, N_ORD_M_, NPATH_M_, NGR_M_)
CALL DO_MAIN()
CALL CLOSE_ALL_FILES()
END SUBROUTINE

View File

@ -0,0 +1,14 @@
memalloc_src := memalloc/dim_mod.f memalloc/modules.f memalloc/allocation.f
cluster_gen_src := $(wildcard cluster_gen/*.f)
common_sub_src := $(wildcard common_sub/*.f)
renormalization_src := $(wildcard renormalization/*.f)
#eig_common_src := $(wildcard eig/common/*.f)
eig_common_src := $(filter-out eig/common/lapack_eig.f, $(wildcard eig/common/*.f))
eig_ar_src := $(wildcard eig/ar/*.f)
eig_ar_src_f90 := $(wildcard eig/ar/*.f90)
SRCS = $(memalloc_src) $(cluster_gen_src) $(common_sub_src) $(renormalization_src) $(eig_common_src) $(eig_ar_src_f90) $(eig_ar_src)
MAIN_F = eig/ar/main.f
SO = _eig_ar.so
include ../../../options.mk

View File

@ -31,7 +31,7 @@ IFORT_FFLAGS_DBG =
################################################################################
# F2PY CONFIGURATION #
################################################################################
F2PYFLAGS = --opt=-O2 -llapack
F2PYFLAGS = --opt=-O2 -llapack -larpack
F2PYFLAGS_DBG = --debug-capi --debug
################################################################################
@ -103,7 +103,7 @@ endif
FFLAGS = $($(PREFIX)_FFLAGS$(SUFFIX))
OBJS = $(addprefix $(BUILDDIR)/, $(patsubst %.f,%.o, $(filter-out $(MAIN_F), $(SRCS))))
OBJS = $(addprefix $(BUILDDIR)/, $(patsubst %.f90,%.o, $(patsubst %.f,%.o, $(filter-out $(MAIN_F), $(SRCS)))))
.PHONY: clean obj all info
@ -141,6 +141,12 @@ $(BUILDDIR)/%.o: %.f
$(FC) $(FFLAGS) -J $(BUILDDIR) -I $(BUILDDIR) -fPIC -o $@ -c $^ $(OUPUT_REDIRECTION)
$(BUILDDIR)/%.o: %.f90
@echo "Compiling $@..."
mkdir -p $(basename $@)
$(FC) $(FFLAGS) -J $(BUILDDIR) -I $(BUILDDIR) -fPIC -o $@ -c $^ $(OUPUT_REDIRECTION)
$(SO): $(OBJS) $(MAIN_F)
@echo "building Python binding $@..."
mkdir -p $(BUILDDIR)