Added mpis.f file.

The file mpis.f was updated to be compatible with Python
bindings. The module CORREXP_MOD was created and is now
allocated in memalloc/allocation.f. The parameter NLMM was
added to dim_mod.f.
This commit is contained in:
Sylvain Tricot 2022-02-09 13:39:28 +01:00
parent 58e9731ffd
commit b1f34aef6a
4 changed files with 297 additions and 0 deletions

View File

@ -175,6 +175,7 @@
CALL ALLOC_C_G()
CALL ALLOC_C_G_A()
CALL ALLOC_C_G_M()
CALL ALLOC_CORREXP()
CALL ALLOC_DEXPFAC2()
CALL ALLOC_DFACTSQ()
CALL ALLOC_EIGEN()

View File

@ -34,6 +34,7 @@ C ===============================================================
INTEGER NCG_M
INTEGER N_BESS, N_GAUNT
INTEGER NLTWO
INTEGER NLMM
C ===============================================================
CONTAINS
SUBROUTINE INIT_DIM()
@ -64,5 +65,6 @@ C N_GAUNT=5*NL_M
N_GAUNT=10*NL_M
NLTWO=2*NL_M
NLMM=LINMAX*NGR_M
END SUBROUTINE INIT_DIM
END MODULE DIM_MOD

View File

@ -192,6 +192,20 @@ C=======================================================================
END SUBROUTINE ALLOC_COOR
END MODULE COOR_MOD
C=======================================================================
MODULE CORREXP_MOD
IMPLICIT NONE
COMPLEX*16, ALLOCATABLE, DIMENSION(:,:) :: A
CONTAINS
SUBROUTINE ALLOC_CORREXP()
USE DIM_MOD
IF (ALLOCATED(A)) THEN
DEALLOCATE(A)
ENDIF
ALLOCATE(A(NLMM,NLMM))
END SUBROUTINE ALLOC_CORREXP
END MODULE CORREXP_MOD
C=======================================================================
MODULE DEBWAL_MOD
IMPLICIT NONE

View File

@ -0,0 +1,280 @@
C
C
C======================================================================
C
SUBROUTINE MPIS(N,NLM,ITYP,IGS,JE,QI,TAU)
C
C
C This subroutine construct the correlation matrices and uses
C LU decomposition method to do the matrix inversion.
C The inverse matrix which is the contribution of a small atom group
C is kept for further use.
C
C H. -F. Zhao : 2007
C
C Last modified (DS) : 13 May 2009
C
USE DIM_MOD
USE COOR_MOD
USE INIT_L_MOD
USE GAUNT_C_MOD
USE TRANS_MOD
USE CORREXP_MOD
C
INTEGER NLM(NGR_M),ITYP(NGR_M),IGS(NGR_M)
COMPLEX*16 TAU(LINMAX,LINFMAX,NATCLU_M)
C
REAL QI
C
COMPLEX*16 ZEROC,ONEC,IC
C
COMPLEX*16 ATTL(0:NT_M,NATM)
COMPLEX*16 EXPJN,ATTJN
COMPLEX*16 YLM(0:NLTWO,-NLTWO:NLTWO)
COMPLEX*16 HL1(0:NLTWO)
COMPLEX*16 SUM_L,SUM_L2
COMPLEX*16 SUM_L_A,SUM_L2_A,SUM_L_B,SUM_L2_B
C
REAL*8 FOURPI
REAL*8 XJN,YJN,ZJN,RJN,KRJN,ZDJN
REAL*8 IM_VK,RE_VK
C
INTEGER IPIV(NLMM),ONE_L,IN1
C
COMPLEX*16 FOURPI_IC,IC_L,IC_REF,TEMP,TEMP1,TEMP2,CN1
COMPLEX*16 AINV(NLMM,NLMM),IN(NLMM,LINFMAX)
C
DATA FOURPI /12.566370614359D0/
C
ZEROC=(0.D0,0.D0)
ONEC=(1.D0,0.D0)
IC=(0.D0,1.D0)
IBESS=3
FOURPI_IC=-IC*FOURPI
C
LM0=LMAX(1,JE)
LM0=MIN(LM0,LF2)
NRHS=(LM0+1)*(LM0+1)
INDJ=0
C
NM=0
DO I=1,N-1
J=NLM(I)+1
NM=NM+J*J
ENDDO
L=NLM(N)
LNMAX=L
L=(L+1)*(L+1)
NM1=NM+1
NML=NM+L
NTYP=ITYP(N)
C
DO L=0,LNMAX
ATTL(L,N)=DCMPLX(TL(L,1,NTYP,JE))
ENDDO
IM_VK=-DIMAG(DCMPLX(VK(JE)))
RE_VK=DBLE(VK(JE))
C
C set up matrix blocks C((N-1)*1) and D(1*(N-1))
C
I=IGS(N)
XN=SYM_AT(1,I)
YN=SYM_AT(2,I)
ZN=SYM_AT(3,I)
C
DO J=1,N-1
JATL=IGS(J)
LJMAX=NLM(J)
JTYP=ITYP(J)
J1=J-1
C
XJN=DBLE(SYM_AT(1,JATL)-XN)
YJN=DBLE(SYM_AT(2,JATL)-YN)
ZJN=DBLE(SYM_AT(3,JATL)-ZN)
RJN=DSQRT(XJN*XJN+YJN*YJN+ZJN*ZJN)
KRJN=RE_VK*RJN
ATTJN=FOURPI_IC*DEXP(IM_VK*RJN)
EXPJN=(XJN+IC*YJN)/RJN
ZDJN=ZJN/RJN
CALL SPH_HAR2(2*NL_M,ZDJN,EXPJN,YLM,LNMAX+LJMAX)
CALL BESPHE2(LNMAX+LJMAX+1,IBESS,KRJN,HL1)
DO L=0,LJMAX
ATTL(L,J)=ATTJN*DCMPLX(TL(L,1,JTYP,JE))
ENDDO
C
II=NM
IN1=-1
CN1=IC
JJ=0
C
DO LN=0,LNMAX
ILN=LN*LN+LN+1
IN1=-IN1
CN1=-CN1*IC
C
DO MLN=-LN,LN
INDN=ILN+MLN
II=II+1
JJ0=J1*INDJ
ONE_L=-IN1
IC_REF=-CN1*IC
C
DO LJ=0,LJMAX
ILJ=LJ*LJ+LJ+1
L_MIN=ABS(LJ-LN)
L_MAX=LJ+LN
ONE_L=-ONE_L
IC_REF=IC_REF*IC
C
C Case MLJ equal to zero
C
JJ1=JJ0+ILJ
IF(LJ.GE.LN) THEN
IC_L=-IC_REF
ELSE
IC_L=-ONEC/IC_REF
ENDIF
C
SUM_L=ZEROC
SUM_L2=ZEROC
C
DO L=L_MIN,L_MAX,2
IC_L=-IC_L
IF(ABS(MLN).LE.L) THEN
TEMP=IC_L*HL1(L)*GNT(L,ILJ,INDN)
SUM_L=SUM_L+YLM(L,MLN)*TEMP
SUM_L2=SUM_L2+DCONJG(YLM(L,MLN))*TEMP
ENDIF
ENDDO
C
IF(ONE_L.EQ.-1) SUM_L2=-SUM_L2
A(JJ1,II)=ATTL(LJ,J)*SUM_L
A(II,JJ1)=ATTJN*ATTL(LN,N)*SUM_L2
C
C
C Case MLJ not equal to zero
C
DO MLJ=1,LJ
INDJ=ILJ+MLJ
INDJN=ILJ-MLJ
JJ1=JJ0+INDJ
JJ1N=JJ0+INDJN
MA=MLN-MLJ
MB=MLN+MLJ
IF(LJ.GE.LN) THEN
IC_L=-IC_REF
ELSE
IC_L=-ONEC/IC_REF
ENDIF
C
SUM_L_A=ZEROC
SUM_L2_A=ZEROC
SUM_L_B=ZEROC
SUM_L2_B=ZEROC
C
DO L=L_MIN,L_MAX,2
IC_L=-IC_L
IF(ABS(MA).LE.L) THEN
TEMP1=IC_L*HL1(L)*GNT(L,INDJ,INDN)
SUM_L_A=SUM_L_A+YLM(L,MA)*TEMP1
SUM_L2_A=SUM_L2_A+DCONJG(YLM(L,MA))*TEMP1
ENDIF
IF(ABS(MB).LE.L) THEN
TEMP2=IC_L*HL1(L)*GNT(L,INDJN,INDN)
SUM_L_B=SUM_L_B+YLM(L,MB)*TEMP2
SUM_L2_B=SUM_L2_B+DCONJG(YLM(L,MB))*TEMP2
ENDIF
ENDDO
C
IF(ONE_L.EQ.-1) THEN
SUM_L2_A=-SUM_L2_A
SUM_L2_B=-SUM_L2_B
ENDIF
A(JJ1,II)=ATTL(LJ,J)*SUM_L_A
A(II,JJ1)=ATTJN*ATTL(LN,N)*SUM_L2_A
A(JJ1N,II)=ATTL(LJ,J)*SUM_L_B
A(II,JJ1N)=ATTJN*ATTL(LN,N)*SUM_L2_B
ENDDO
C
C
ENDDO
JJ=JJ0+INDJ
C
ENDDO
ENDDO
C
JJ=JJ-INDN
C
ENDDO
C
C add B to A
C
DO I=NM1,NML
DO J=NM1,NML
IF(J.EQ.I) THEN
A(J,I)=ONEC
ELSE
A(J,I)=ZEROC
ENDIF
ENDDO
ENDDO
C
C construct AINV
C
DO I=1,NML
DO J=1,NML
AINV(J,I)=A(J,I)
ENDDO
ENDDO
C
C
C matrix inversion(ax=b)
C
CALL ZGETRF(NML,NML,AINV,NLMM,IPIV,INFO1)
IF(INFO1.NE.0) THEN
WRITE(6,*) ' ---> INFO1 =',INFO1
ELSE
C
DO I=1,NRHS
DO J=1,NML
IF(J.EQ.I) THEN
IN(J,I)=(1.D0,0.D0)
ELSE
IN(J,I)=(0.D0,0.D0)
ENDIF
ENDDO
ENDDO
C
CALL ZGETRS('N',NML,NRHS,AINV,NLMM,IPIV,IN,NLMM,INFO)
IF(INFO.NE.0) THEN
WRITE(6,*) ' ---> INFO =',INFO
ENDIF
ENDIF
C
C sum of tau
C
KLIN=0
DO K=1,N
KATL=IGS(K)
LMK=NLM(K)
INDKM=(LMK+1)*(LMK+1)
C
DO INDJ=1,NRHS
C
DO INDK=1,INDKM
KLIN=KLIN+1
C
TAU(INDK,INDJ,KATL)=TAU(INDK,INDJ,KATL)
1 +DBLE(QI)*IN(KLIN,INDJ)
C
ENDDO
KLIN=KLIN-INDKM
C
ENDDO
KLIN=KLIN+INDKM
C
ENDDO
C
RETURN
C
END