Merge branch 'alter_devel' into devel
This commit is contained in:
commit
8fe37b1509
5
Makefile
5
Makefile
|
@ -38,10 +38,9 @@ light: venv
|
|||
@$(INSIDE_VENV) pip install src/
|
||||
|
||||
nogui: VENV_PATH = ./_venv
|
||||
nogui: venv
|
||||
@$(INSIDE_VENV) pip install --no-cache-dir --upgrade -r src/pip.freeze
|
||||
nogui: venv pybinding
|
||||
@$(INSIDE_VENV) pip install -e src/
|
||||
@+$(INSIDE_VENV) $(MAKE) -C src pybinding
|
||||
|
||||
|
||||
_attrdict:
|
||||
# Check if virtualenv python version > 3.3.0
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/iodata.py
|
||||
# Last modified: Tue, 22 Oct 2024 12:39:54 +0200
|
||||
# Last modified: Thu, 27 Feb 2025 16:33:09 +0100
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes.fr>
|
||||
|
||||
|
||||
|
|
|
@ -17,8 +17,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/looper.py
|
||||
# Last modified: Mon, 27 Sep 2021 17:49:48 +0200
|
||||
# Committed by : sylvain tricot <sylvain.tricot@univ-rennes1.fr>
|
||||
# Last modified: Thu, 27 Feb 2025 16:33:09 +0100
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes.fr>
|
||||
|
||||
from collections import OrderedDict
|
||||
from functools import partial
|
||||
|
@ -92,9 +92,8 @@ class Sweep:
|
|||
|
||||
|
||||
class SweepRange:
|
||||
def __init__(self, *sweeps, passindex=False):
|
||||
def __init__(self, *sweeps):
|
||||
self.sweeps = sweeps
|
||||
self.passindex = passindex
|
||||
self.index = 0
|
||||
|
||||
# First check that sweeps that are linked to another on are all included
|
||||
|
@ -158,17 +157,15 @@ class SweepRange:
|
|||
for s in [sweep,] + children:
|
||||
key, value = s[idx]
|
||||
row[key] = value
|
||||
if self.passindex:
|
||||
row['sweep_index'] = i
|
||||
row['sweep_index'] = i
|
||||
return row
|
||||
else:
|
||||
raise StopIteration
|
||||
|
||||
@property
|
||||
def columns(self):
|
||||
cols = [sweep.key for sweep in self.sweeps]
|
||||
if self.passindex:
|
||||
cols.append('sweep_index')
|
||||
cols = ['sweep_index']
|
||||
cols += [sweep.key for sweep in self.sweeps]
|
||||
return cols
|
||||
|
||||
@property
|
||||
|
@ -202,31 +199,27 @@ class Looper:
|
|||
logger.debug("Pipeline called with {}".format(x))
|
||||
return self.pipeline(**x)
|
||||
|
||||
def run(self, *sweeps, ncpu=1, passindex=False):
|
||||
def run(self, *sweeps, ncpu=1, **kwargs):
|
||||
logger.info("Loop starts...")
|
||||
# prepare the list of inputs
|
||||
sr = SweepRange(*sweeps, passindex=passindex)
|
||||
sr = SweepRange(*sweeps)
|
||||
items = sr.items
|
||||
|
||||
data = []
|
||||
|
||||
t0 = time.time()
|
||||
|
||||
if ncpu == 1:
|
||||
# serial processing...
|
||||
logger.info("serial processing...")
|
||||
t0 = time.time()
|
||||
|
||||
for i, values in enumerate(items):
|
||||
values.update(kwargs)
|
||||
result = self._wrapper(values)
|
||||
data.append(result)
|
||||
|
||||
t1 = time.time()
|
||||
dt = t1 - t0
|
||||
logger.info("Processed {:d} sets of inputs in {:.3f} seconds".format(
|
||||
len(sr), dt))
|
||||
|
||||
else:
|
||||
# Parallel processing...
|
||||
chunksize = 1 #int(nsets/ncpu)
|
||||
[values.update(kwargs) for values in items]
|
||||
logger.info(("Parallel processing over {:d} cpu (chunksize={:d})..."
|
||||
"").format(ncpu, chunksize))
|
||||
t0 = time.time()
|
||||
|
@ -236,21 +229,23 @@ class Looper:
|
|||
pool.close()
|
||||
pool.join()
|
||||
|
||||
t1 = time.time()
|
||||
dt = t1 - t0
|
||||
logger.info(("Processed {:d} sets of inputs in {:.3f} seconds"
|
||||
"").format(len(sr), dt))
|
||||
t1 = time.time()
|
||||
dt = t1 - t0
|
||||
logger.info(("Processed {:d} sets of inputs in {:.3f} seconds"
|
||||
"").format(len(sr), dt))
|
||||
|
||||
# Create the DataFrame
|
||||
dfdata = []
|
||||
columns = sr.columns + ['output',]
|
||||
columns = sr.columns + list(kwargs.keys()) + ['output',]
|
||||
|
||||
for i in range(len(sr)):
|
||||
row = list(items[i].values())
|
||||
row.append(data[i])
|
||||
dfdata.append(row)
|
||||
|
||||
|
||||
df = pd.DataFrame(dfdata, columns=columns)
|
||||
df = df.drop(columns=['sweep_index'])
|
||||
|
||||
self.data = df
|
||||
|
||||
|
@ -259,14 +254,14 @@ class Looper:
|
|||
# of corresponding dict of parameters {'keyA': [val0,...valn],
|
||||
# 'keyB': [val0,...valn], ...}
|
||||
|
||||
all_xy = []
|
||||
for irow, row in df.iterrows():
|
||||
all_xy.append(row.output[0])
|
||||
all_xy.append(row.output[1])
|
||||
parameters = df.to_dict()
|
||||
parameters.pop('output')
|
||||
# all_xy = []
|
||||
# for irow, row in df.iterrows():
|
||||
# all_xy.append(row.output[0])
|
||||
# all_xy.append(row.output[1])
|
||||
# parameters = df.to_dict()
|
||||
# parameters.pop('output')
|
||||
|
||||
return all_xy, parameters
|
||||
return self.data #all_xy, parameters
|
||||
|
||||
|
||||
|
||||
|
@ -276,17 +271,16 @@ class Looper:
|
|||
if __name__ == "__main__":
|
||||
import numpy as np
|
||||
import time
|
||||
import logging
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
|
||||
def bar(**kwargs):
|
||||
return 0
|
||||
|
||||
def post_process(data):
|
||||
x = data.x.unique()
|
||||
y = data.y.unique()
|
||||
|
||||
i = kwargs.get('sweep_index')
|
||||
return np.linspace(0,i,10)
|
||||
|
||||
theta = Sweep(key='theta', comments="The polar angle",
|
||||
start=-70, stop=70, num=3,
|
||||
|
@ -314,7 +308,16 @@ if __name__ == "__main__":
|
|||
|
||||
looper = Looper()
|
||||
looper.pipeline = bar
|
||||
data = looper.run(emitter, emitter_plane, uij, theta, levels, ncpu=4,
|
||||
passindex=True)
|
||||
other_kws = {'un':1, 'deux':2}
|
||||
data = looper.run(emitter, emitter_plane, uij, theta, levels, ncpu=4, **other_kws)
|
||||
|
||||
# Print the dataframe
|
||||
print(data)
|
||||
#print(data[data.emitter_plane.eq(0)].theta.unique())
|
||||
|
||||
# Accessing the parameters and ouput values for a given sweep (e.g the last one)
|
||||
print(looper.data.iloc[-1])
|
||||
|
||||
# Post-process the output values. For example here, the output is a 1D-array,
|
||||
# make the sum of sweeps with 'Sr' emitter
|
||||
X = np.array([ x for x in data[data.emitter == 'Sr'].output]).sum(axis=0)
|
||||
print(X)
|
||||
|
|
|
@ -19,8 +19,8 @@
|
|||
# along with this msspec. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
# Source file : src/msspec/utils.py
|
||||
# Last modified: Thu, 06 Oct 2022 18:27:24 +0200
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes1.fr> 1665073644 +0200
|
||||
# Last modified: Thu, 27 Feb 2025 16:33:09 +0100
|
||||
# Committed by : Sylvain Tricot <sylvain.tricot@univ-rennes.fr>
|
||||
|
||||
|
||||
"""
|
||||
|
@ -468,8 +468,12 @@ def hemispherical_cluster(cluster, emitter_tag=0, emitter_plane=0, diameter=0,
|
|||
# the symbol of your emitter
|
||||
symbol = cluster[np.where(cluster.get_tags() == emitter_tag)[0][0]].symbol
|
||||
|
||||
assert (diameter != 0 or planes != 0), \
|
||||
"At least one of diameter or planes parameter must be use."
|
||||
if shape.lower() in ('spherical'):
|
||||
assert (diameter != 0 or planes != 0), \
|
||||
"At least one of diameter or planes parameter must be use."
|
||||
elif shape.lower() in ('cylindrical'):
|
||||
assert (diameter != 0 and planes != 0), \
|
||||
"Diameter and planes parameters must be defined for cylindrical shape."
|
||||
|
||||
if diameter == 0:
|
||||
# calculate the minimal diameter according to the number of planes
|
||||
|
@ -479,6 +483,7 @@ def hemispherical_cluster(cluster, emitter_tag=0, emitter_plane=0, diameter=0,
|
|||
|
||||
# number of repetition in each direction
|
||||
rep = int(3*min_diameter/min(a, c))
|
||||
#print("rep = ", rep)
|
||||
|
||||
# repeat the cluster
|
||||
cluster = cluster.repeat((rep, rep, rep))
|
||||
|
@ -542,7 +547,7 @@ def hemispherical_cluster(cluster, emitter_tag=0, emitter_plane=0, diameter=0,
|
|||
xplan, yplan = get_xypos(cluster, zplan)
|
||||
radius = np.sqrt(xplan**2 + yplan**2 + zplan**2)
|
||||
|
||||
if diameter != 0:
|
||||
if diameter != 0 and shape in ('spherical'):
|
||||
assert (radius <= diameter/2), ("The number of planes is too high "
|
||||
"compared to the diameter.")
|
||||
radius = max(radius, diameter/2)
|
||||
|
@ -575,3 +580,90 @@ def hemispherical_cluster(cluster, emitter_tag=0, emitter_plane=0, diameter=0,
|
|||
Atoms.translate(cluster, [0, 0, -ze]) # put the emitter in (0,0,0)
|
||||
|
||||
return cluster
|
||||
|
||||
def shape_cluster(primitive, emitter_tag=0, emitter_plane=0, diameter=0,
|
||||
planes=0, shape='spherical'):
|
||||
|
||||
"""Creates and returns a cluster based on an Atoms object and some
|
||||
parameters.
|
||||
|
||||
:param cluster: the Atoms object used to create the cluster
|
||||
:type cluster: Atoms object
|
||||
:param emitter_tag: the tag of your emitter
|
||||
:type emitter_tag: integer
|
||||
:param diameter: the diameter of your cluster in Angströms
|
||||
:type diameter: float
|
||||
:param planes: the number of planes of your cluster
|
||||
:type planes: integer
|
||||
:param emitter_plane: the plane where your emitter will be starting by 0
|
||||
for the first plane
|
||||
:type emitter_plane: integer
|
||||
|
||||
See :ref:`hemispherical_cluster_faq` for more informations.
|
||||
"""
|
||||
# We need the radius of the cluster and the number of planes
|
||||
if shape.lower() in ('ispherical', 'cylindrical'):
|
||||
assert (nplanes != 0 and diameter != 0), "nplanes and diameter cannot be zero for '{}' shape".format(shape)
|
||||
elif shape.lower() in ('spherical'):
|
||||
if diameter <= 0:
|
||||
# find the diameter based on the number of planes
|
||||
assert planes != 0, "planes should be > 0"
|
||||
|
||||
|
||||
n = 3
|
||||
natoms = 0
|
||||
while True:
|
||||
n += 2
|
||||
cluster = primitive.copy()
|
||||
# Repeat the primitive cell
|
||||
cluster = cluster.repeat((n, n, n))
|
||||
center_cluster(cluster)
|
||||
|
||||
# Find the emitter closest to the origin
|
||||
all_tags = cluster.get_tags()
|
||||
are_emitters = all_tags == emitter_tag
|
||||
_ie = np.linalg.norm(cluster[are_emitters].positions, axis=1).argmin()
|
||||
ie = np.nonzero(are_emitters)[0][_ie]
|
||||
# Translate the cluster to this emitter position
|
||||
cluster.translate(-cluster[ie].position)
|
||||
# cut plane at surface and at bottom
|
||||
all_z = np.unique(cluster.positions[:,2])
|
||||
try:
|
||||
zsurf = all_z[all_z >= 0][emitter_plane]
|
||||
except IndexError:
|
||||
# There are not enough planes above the emitter
|
||||
zsurf = all_z.max()
|
||||
try:
|
||||
zbottom = all_z[all_z <= 0][::-1][planes - (emitter_plane+1)]
|
||||
except IndexError:
|
||||
# There are not enough planes below the emitter
|
||||
zbottom = all_z.min()
|
||||
cluster = cut_plane(cluster, z=[zbottom,zsurf])
|
||||
# spherical shape
|
||||
if shape.lower() in ('spherical'):
|
||||
cluster = cut_sphere(cluster, radius=diameter/2, center=(0,0,zsurf))
|
||||
if shape.lower() in ('ispherical'):
|
||||
cluster = cut_sphere(cluster, radius=diameter/2, center=(0,0,0))
|
||||
elif shape.lower() in ('cylindrical'):
|
||||
cluster = cut_cylinder(cluster, radius=diameter/2)
|
||||
else:
|
||||
raise NameError("Unknown shape")
|
||||
cluster.set_cell(primitive.cell)
|
||||
if len(cluster) <= natoms:
|
||||
break
|
||||
else:
|
||||
natoms = len(cluster)
|
||||
|
||||
|
||||
return cluster
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue