MsSpec-DFM/New_libraries/DFM_library/TEST_LIBRARY/test_int_Hubbard.f90

158 lines
6.3 KiB
Fortran

!
!=======================================================================
!
MODULE TEST_INT_HUBBARD
!
USE ACCURACY_REAL
!
! This module contains the test subroutine for the Hubbard double integral
!
CONTAINS
!
!=======================================================================
!
SUBROUTINE CALC_TEST_HUBBARD
!
! This subroutine tests the Hubbard double integral occuring
! in the calculation of the correlation energy
!
! Reference : J. Hubbard, Proc. Roy. Soc. A 243, 336-352 (1958)
!
!
! Author : D. Sébilleau
!
! Last modified : 15 Dec 2020
!
!
!
USE DIMENSION_CODE, ONLY : NZ_MAX
USE MATERIAL_PROP, ONLY : RS
USE REAL_NUMBERS, ONLY : ZERO,ONE,TWO,HALF,FOURTH
USE PI_ETC, ONLY : PI,PI_INV
USE UTILITIES_1, ONLY : ALFA
USE INTEGRATION, ONLY : INTEGR_L
!
IMPLICIT NONE
!
INTEGER :: IX,IY
INTEGER :: LOGF
!
REAL (WP) :: XI,HX,HY
REAL (WP) :: X,X3,Y
REAL (WP) :: A(NZ_MAX,NZ_MAX)
REAL (WP) :: SIGMA(NZ_MAX,NZ_MAX)
REAL (WP) :: F1(NZ_MAX),F2(NZ_MAX)
REAL (WP) :: INT_1,INT_2
REAL (WP) :: NUM1,NUM2,DEN1,DEN2,Z1,Z2
!
REAL (WP), PARAMETER :: MX = 5.0E0_WP ! upper integration
REAL (WP), PARAMETER :: MY = 5.0E0_WP ! bounds in x and y
!
REAL (WP), PARAMETER :: SM = 1.0E-8_WP ! starting grid value
!
REAL (WP) :: FLOAT,LOG,ABS
!
LOGF = 6 ! log file
!
XI = TWO * ALFA('3D') * PI_INV * RS ! ref. 1 eq. (28)
!
HX = MX / FLOAT(NZ_MAX - 1) ! x-step
HY = MY / FLOAT(NZ_MAX - 1) ! y-step
!
WRITE(LOGF,10) !
WRITE(LOGF,20) !
WRITE(LOGF,30) !
WRITE(LOGF,20) !
!
WRITE(LOGF,40) NZ_MAX,MX !
WRITE(LOGF,40) NZ_MAX,MY !
WRITE(LOGF,20) !
!
! Construction the functions A and Sigma
!
DO IX = 1, NZ_MAX !
!
X = SM + FLOAT(IX - 1) * HX !
X3 = X * X * X !
!
DO IY = 1, NZ_MAX !
!
Y = SM + FLOAT(IY - 1) * HY !
!
! Calculation of Sigma(x,y) ! ref. 1 eq. (26)
!
IF(Y > X * (X + TWO)) THEN !
SIGMA(IX,IY) = ZERO !
ELSE IF(X > TWO .AND. Y < X * (X - TWO)) THEN !
SIGMA(IX,IY) = ZERO !
ELSE IF( X > TWO .AND. X * (X - TWO) < Y .AND. & !
Y < X * (X + TWO) & !
.OR. & !
X < TWO .AND. X * (TWO - X) < Y .AND. & !
Y < X * (X + TWO) & !
) THEN !
SIGMA(IX,IY) = - PI * XI * HALF * ( ONE - FOURTH * & !
(Y / X - X)**2 & !
) / X3 !
ELSE IF(X < TWO .AND. ZERO < Y .AND. & !
Y < X * (TWO - X)) THEN !
SIGMA(IX,IY) = - PI * XI * Y * HALF / X3 !
END IF !
!
! Calculation of A(x,y) ! ref. 1 eq. (27)
!
NUM1 = Y - X * (X + TWO) !
NUM2 = Y + X * (X + TWO) !
DEN1 = Y - X * (X - TWO) !
DEN2 = Y + X * (X - TWO) !
!
Z1 = (Y / X - X)**2 !
Z2 = (Y / X + X)**2 !
!
A(IX,IY) = - XI * ( X + & !
HALF * (ONE - FOURTH * Z1) * & !
LOG(ABS(NUM1 / DEN1)) + & !
HALF * (ONE - FOURTH * Z2) * & !
LOG(ABS(NUM2 / DEN2)) & !
) / X3 !
!
! y-integrand
!
F2(IY) = ATAN( SIGMA(IX,IY) / (ONE - A(IX,IY)) ) - & !
SIGMA(IX,IY) !
!
END DO !
!
! Computing the integral over y
!
CALL INTEGR_L(F2,HY,NZ_MAX,NZ_MAX,INT_2,1) !
!
! x-integrand
!
F1(IX) = X * X * INT_2 !
!
END DO !
!
! Computing the integral over x
!
CALL INTEGR_L(F1,HX,NZ_MAX,NZ_MAX,INT_1,1) !
!
WRITE(LOGF,60) INT_1 !
!
WRITE(LOGF,80) !
!
! Formats:
!
10 FORMAT(6X,'_________________________________________________________')
20 FORMAT(5X,'| |')
30 FORMAT(5X,'|',3X,'Test of the integrals contained in HUbbard eps_c |')
40 FORMAT(5X,'|',5X,'Integr. points: ',I4,' Up. bound x: ',F8.3,9X,'|')
50 FORMAT(5X,'|',5X,'Integr. points: ',I4,' Up. bound y: ',F8.3,9X,'|')
60 FORMAT(5X,'|',36X,'INT = ',F8.3,7X,'|')
80 FORMAT(5X,'|_________________________________________________________|',/)
!
END SUBROUTINE CALC_TEST_HUBBARD
!
END MODULE TEST_INT_HUBBARD