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The effects of short-range correlations on the properties of the electron gas are studied using an approach
phrased in the polarization potential language of Pines and Nozieres. It was argued by Lowy and Brown that
two-body terms make up the dominant contribution to the effective interaction for large momentum transfers.
In the region of small-momentum transfers it is known that the random-phase approximation provides an

adequate picture of the electron gas. With these two regions of large- and small-momentum transfers in

mind, a polarization propagator is constructed to interpolate between them. A number of sum rules, among
them the f-sum rule, involving the imaginary part of the polarization propagator, were found to be satisfied.
The failure of our theory to satisfy the compressibility sum rule is discussed in detail. We present here the
results for the local t-matrix, the dynamic and static form factors, and the pair correlation function. That
our pair-correlation function remains positive and is essentially the same as in the paper of Lowy and Browrl

indicates that the physics and not the formalism is responsible for the results we obtain.

I. INTRODUCTION

In a series of papers, ' Singwi and collaborators
developed a method for inclusion of short-range
correlations in the electron gas at metallic den-
sities. The method was somewhat intuitive, mak-
ing a conjecture for -the behavior of the density-
density correlation function at small sepax ations,
and then iterating the relevant equations to a-
chieve self-consistency. In later work, I,owy and
Brown' showed tha, t summation of la.dder diagra, ms
of the Coulomb intera, ction reproduced numeric-
ally the results of Singwi ef. al. They adduced ar-
guments to make it plausible that for small sep-
arations (large-momentum transfers), such a.

summation dominated the effective interaction be-
tween electrons in the electron gas. For large
separations (small-momentum transfers), it is
known that the random-phase approximation (RPA)
is a good approximation. With these two limiting
values of the effective interaction, an effective in-
teraction was constructed that interpolated between
the large- and small-momentum-transfer regions.

With this effective interaction various proper-
ties of the electron gas were studied. One of the
quantities studied was the pair-correlation func-
tion, g(r) at metallic densities. The method em-
ployed by Lowy and Brown in their paper was
borrowed from the Brueckner theory of nuclear
matter. A correlated wave function was construc-
ted from the effective interaction and g(r) was com-
puted from this wave function. An important re-
sult of this calculation was that g(x) remained
positive for all x~ 0 and for all densities studied.
This in itself is an important result since all other
approximations give negative values for the pair-

correlation function at small separations at den-
sities in which x, ~ 5.

The results they obtained for g(r) were some-
what unclear. The pair- correlation function was
obtained from the squared absolute value of the
correlated wave function which is positive by def-
inition. Thus, the exact comparison with other
methods of building short-range correlations into
the effective interaction were obscured by the
method used in obtaining g(r).

In this paper, we use a more conventional ap-
proach, phra, sed in the polarization-potential lan-
guage closely related to that of Pines and Nozieres'
and Aldrich et al. ,

' to study the properties of elec-
trons in the electron gas. Our approa, ch in this
paper is to construct a density-density response
function (polarization propagator) in which the
bare Coulomb interaction is replaced by a local
average of the ladder diagrams which includes
both direct and exchange terms. This, we will
see, takes into account in an approximate way the
contributions arising from the proper polarization
diagrams, some of which are shown in Fig. 4. We
find using this approach that the results we obtain
for the pair-correlation function are essentially
the same as those of Lowy and Brown (LB). Since
the two approaches are different and the results
are the same, we feel confident in our claim that
it is the physics that keeps g(r) positive and that
it is not due to some artifact of the method used
to construct g(r).

In addition to the pair-correlation function, we
give the numerical results for: the local t matrix,
the dynamic form factor S(j, r~), and the static
form factor S(qj. A discussion of sum rules and
other checks of consistency are given in Sec. IV.
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II. t MATRIX

In Sec. IIA, me mill discuss the construction of
our effective interaction which interpolates between
the large- and small-momentum transfer regions.
In Sec. II, we outline the arguments given in LB
for retaining only the ladder diagrams for the ef-
fective interactions at short distances, and in de-
tail the numerical methods used in constructing a
local t matrix.
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A. Short-range interaction

The long-range part of the effective interaction
of electrons in an electron gas is screened. The
distance scale for screening is essentially gov-
erned by the reciprocal of the Fermi-Thomas mo-
mentum qFT. For electrons that come closer than
this typical distance, the effects of screening be-
come negligible. This decrease in the screening
is mainly due to two phenomena: (i) the repulsive
nature of the interaction and (ii) the fact that elec-
trons are spin--,'- fermions.

If two electrons are close together, it costs a
considerable amount of energy to bring a third
electron near the pair of electrons since the third
one must approach a double charge. To screen the
interaction between two electrons a third electron
must be introduced. Since the energy of introduc-
ing a third electron is large, we have from the un-
certainty principle that the lifetime of this virtual
state of three electrons is short, compared to the
lifetime of the electron pair.

We have an additional decrease in the screening
due to exchange cancellations. If we have three
electrons close together at least two of the elec-
trons will have their spins parallel. Because of
the Pauli principle, this will cause a further re-
duction in the screening, expressed as a cancel-
lation of the direct and exchange screening in our
formalism. In LB it was shown that this cancel-
lationwasof the order kz/q'. Denoting the term
corresponding to Fig. 1(a) by D„etc., they showed
that for q &k~, each of the ladder diagrams were of
the same order in kz/q,

D„/D, =0.165r, [1+0(k'/q') ].
If only direct screening terms were kept, they
found that

D,/D, =0.110r,(k'/q') [1+O(k'/q') ].
This, however, overestimates the screening since
including the exchange term Fig. 1(d) gives

( , D~+)D/ DO 880r (ke /q ) [.1+0(kr/q )] ~ (8)

Since the long-range part of the interaction will
include the effects of screening and at short ranges

(c)

FIG. 1. For q & kz first- and second-order ladder
contributions (a) and (b) are the same order in k&/q.
Second-order direct screening term (c) is order kz/q
smaller than (a) or (b), but (c) plus the exchange
screening term (d) is order kF/q smaller than (a) or
(b) .

the screening is negligible, we do not include
screening diagrams for short ranges since this
will double count the screening diagrams for long
ranges. Thus, we restrict our short-range piece
of the interaction to be the sum to all orders of
ladder diagrams in the unscreened Coulomb po-
tential.

B. Particle-particle t matrix

In studying the scattering of two electrons it is
convenient to introduce the f, matrix. The t matrix
is the solution to the Lippmann-Schwinger integral
equation mhich formally sums to all orders the
ladder diagrams of Fig. 2. We can write this equa-
tion in momentum space in terms of the relative
and center of mass momentum p and K where p
= —,'(k, —k, ) and K =k, +k, . If the system scatters
from an initial state

f p, K) to the final state
f

p', K)
(where both states are plane-wave states in the
relative and center of mass momentum) the t ma-
trix can be written in the following way:

&p', Klt) Ip K) =&p'll'Ip&+ („).&p'll'Ik&

1

z —e f-,'K+kl —e f-,'K-kl
&& (kK ft(E) fp, K),

where
4me'

&p'
f
V

f p) = lim
f
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q(k, K, k„)=e(i-,"K+k] —k, )e((-',K-k] -k ),
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FIG. 2. t matrix of Eq. (4) formally sums to all or-
ders diagrams Qf tIIIs type. If &e 1"estl"Ict the UlteI*-
metliate momenta to be greater than k& we have the dia-
gr

BITING

that a re summed by Eq . (7) .

The energies e~;~ are the single-particle energies
w~ic~ for free e~ec~rons are graven hy e~,

~

=p'/2m.
The energy E is just the initial energy of the two-
parti. c].e state-

~i-,'K+p~ + ~+K-p~ ~

The units are chosen, such that ii=1, 1/m =7.619
e V A', and 4'' = 181.018 eP A.

In the presence of a many-body medium, the in-
teraction of the two electrons will be modified.
From now on, we are interested only in the short-
range pi.ece of our interaction. In this region, it
was shown that only the two-body terms will dom-
inate and that higher-order terms involving the
screening of the interaction can be neglected.
We can approximate thzs by treating the many-
body medium as a filled Fermi sea of noninteract-
ing electrons whose only role is to restrict the
intermediate moment@ of the interacting pair of
electrons, The initial. state of the two electrons
is such that 0 ~ ~-;K+ P ~

~ kz., thus, all transitions
to states above the Fermi sea are virtual and no
real transitions occur.

The presence of the filled Fermi sea restricts
. the intermediate momenta to be above the Fermi

momentum k~, . To take into account the restriction
on the intermediate momenta in Eq. (4), we intro-
duce the Pauli projection operator Q(k, K, kz) into
the kernel of the integral of Eq. C4),

&Ii' K It(E) Ili K)

q(k, Xl k, = (10)

Ifwe use Q in Eq. (7) t becomes afunction only of the
magnitude of K. The only angle we have left to
expand in is the angle between the initial and final
relative momentum. In terms of partial waves,
we can write the t matrix as follows:

&p'lt (E) IF)

=4it Q (21+1)&p'~t", (E) ~p)P, (p'p). (11)
l =0

%'e can also expand the Coulomb interaction in
this angle,

Equation (7) is identical to the Brueckner G matrix
of nuclear matter calculations which sums to all
orders the ladder diagrams of Fig. 2 where all in-
termediate states are particles, i.e. , 4 &@~. In
our approximation we ignore self-energy correc-
tions to the single-particle excitation spectrum and
use only the free-particle spectrum for our ener-
gies; thus, e~-~ =p'/2m. This approximation may
not be valid in light of the recent experimental.
work in the region of large-momentum transfers. ' '
It does, however, account for some of the features
of these experiments. We sha11 not go into the de-
tails of the experimental findings in this paper,
but we will refer to them and compare some of our
results with them in this paper. The energy de-
nominator of Eq. (7) in this approximation reduces
to (p' —k')/m.

In Sec. IIC we construct a particle-hole t ma-
trix from the particle-particle f, matrix. For this
we must include exchange corrections in the f, ma-
trix. This is most simply done when the t matrix
is expanded in a partial-wave series. To perform
the partial-wave decomposition of the t matrix we
must approximate the Pauli operator by its angle
average Q,'

f&QigQ(k, K, kr) =Q(k, E, k~) fdQik,

&p'~ V~p)=4K g (21+1)&p'~ V, ~p)P (p'p} (12)
l =0
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The functions P, and Q, are just the I egendre
functions of the first and. second kind.

If we plug Eqs. (11) and (12) inio Eq. (7) and re-
place Q by Q the integral equation decouples into
integral equations for each partial wave,

+ dtt2&p'l v, la&
0

x Q( ~ & E)
(@l rtlp&

(L, Particle-hoIe t matrix

(15b)

%6 can use these two lowest-order elements of
the particle-particle interaction to construct the
lowest-order particle-hole matrix element' V „,
where

I'sn=&k2-q k2II'polka-q kx&-

In terms of the particle-particle matrix elements
we can write this in the following way:

v~„= (k~ —q, k, l
v

l k, , k, —q)

—(k~, k~ —q l vl k~, k, —q& (16b)

The diagrams fox the paxticle-hole matrix ele-
ment in lowest order are shown in Fig. 3(b).

The partial wave decomposition of the I, matrix
allows us to construct, in a simple way, a parti-
cle-hole t matrix which takes into account both the
direct Rnd exchange contributions to the interac-
tion. Note that since the exchange term is in-
cluded, particle-hole laddex's are also summed in

Using the Pauli operator in Eq. (7) is equivalent
to antisymmetrizing the wave function of the inter-
acting pair of electrons with respect to the filled
Fermi sea of noninteracting electrons. We must
also antisymmetrize the wave function of the inter-
acting pair of electrons. To compute matrix ele-
ments of the interaction we need only antisym-
metrize the front or the back wave functions. The
two lowest-order diagrams that are included in the
particle-particle t matrix are shown in Fig. S(a).
We note that the antisymmetrization of the wave
function takes into account the exchange contribu-
tion to the intel Rctlon. The IQRtrlx elements fox'

the direct v„and the exchange v, terms ax'e

v, = &k, -q, k, l vlk„k, -q&, (15a)

v, =(k, , k, -ql vlk, , k, -q&.

(b)

FIG. 3. ID (a), %'e have the lo%'est-fardel particle-
particle direct and exchange matrix elements. The
diagrams xn (b) are just the lowest-order particle-hole
di.rect and exchange matrix eleInents.

our theory. In our final results they are included
only approximately, however, because of our need
to average over the Fermi sea to obtain a local t
matrix, as discussed in Sec. IIE. The wave func-
tion of the incoming or outgoing states must be
antisymmetric in both the spin and coordinate
space. If they are in a spin singlet state, only the
even partial waves will contribute with a weight of
2 to the interaction. If they are in a spin triplet
state, only the odd partials will contribute and they
will have a weight of ~. 'The particle-hole t ma-
trix is obtained from Eq. (16b) by replacing each
V by a t. If we write this in terms of the relative
Rnd centel' of mass momentum Rnd denote the pRr-
ticle-hole t matrix by t f„(p', p) then,

t,„(p', p) =4v g —.'(2l+ l)(p'l t, lp&P, (p' p)

(2I+1)&p'lt lp)P (p'p) (17)

D. Numerical methods

It is well known that the Coulomb interaction has
an infinite range. In momentum space this ap-
peRrs Rs R dlvex'gelMe of the lnterRctlon ln the lim-
it of small-momentum transfers. In this limit of
small-momentum transfers, many partial w'aves
will contribute. to the interaction. This same be-
havior will persist for small-momentum trans-
fers in the I; matrix. In the original program the
t matrix was evaluated directly by solving for each
partial wave using Eq. (14) and then they were
plugged into Eq. (17) to give the t matrix. This
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If we let t, =v, + t, then,

v, + f, = v, + v, (Q/~)( v, + f,),
t, = V, (Q/&) V)+ V((Q/e)t( .

(18)

Equation (18) is now an integral equation for the
new quantity t, . We can write this as follows

(I —V, (Q/e))f, = V, (Q/e) V, .

Inverting the integral operator on the left yields

f, = 0- v, (Q/~)) 'v, (Q/~) v, . (19)

Equation (19) is a matrix equation for f, in which
the rows and columns are labeled by the initial and
final relative momentum defined on a set of Gauss
points. Since all quantities on the right-hand side
of Eq. (19) are known, this yields an exact result
for t, (except for the errors arising from the
Gaussian quadrature methods used and other er-
rors of a numerical nature).

The usefulness of this approach is that for small-
momentum transfers t, is a small finite quantity.
The divergence at small momenta of the t mat. ix
comes from the v, 's in Eq. (14). To construct the
particle-hole t matrix from the partial-wave series
of Eq. (17), many v, 's are needed, however, the
computing time for these is very small. If we re-
place the f» of Eq. (17) by v, +I, , we have the fol-
lowing equation:

required a considerable amount of computer time
since a large number of partial waves were re-
quired for small-momentum transfers. Instead
of this direct approach, w'e used a modified ap-
proach suggested by Alpo Kallio. "

Symbolically, we can write Eq. (14)

f, = V, + V, (Q/e)t, ,

E. Local t matrix

In Sec. III, we plan to use our t matrix to con-
struct an RPA-type theory to study the properties
of the electron gas at metallic densities. The t
ma, trix we have constructed is a nonlocal operator,
however, and would introduce great complications
in connection wi. th gauge invariance, etc. Since
our arguments show that the effective operator is
local at both high and low q, we shall construct a
local operator to interpolate between the regions
of large- and small-momentum transfers. We
have no justification for this operator for interme-
diate q, q -kz. Since the t matrix for large- mo-
mentum transfers was a slowly varying function
of the relative and center of mass momentum, and
for small q it approaches the Coulomb interaction
we defined a local particle-hole t matrix, denoted
by f,"„'(q), a,s follows:

f, (e)=-+„

x 2, [I —Q(k, IC, k») ]t~„(k,q), (21)

where

d 'j„d'K
(2 ) (2 )

[I Q(k K k ) ]~ (22)

It turns out that the dependence on K was very
weak so rather than integrating over K we set K
equal to some constant value and integrated over
the relative momentum k. We varied K over a wide
range of values and found no change in f"„'(q). In
Table I, we list values for our local t matrix for
a number of densities. It can be seen that f"„'(q)
deviates from the Coulomb potential, 4»e'/q', only
by terms of order q'/k» for small q.

f»(p, p)=4» g —.'(2I+I)&p lv, lp&I, (p'p)
l =odd

i=even

4 Z-:(2I I)(p if;l»~, (p"p)

III. PROPERTIES OF THE ELECTRON GAS

A. Density4ensity response function

A quantity of interest in studying the electron
gas is the density-density response function ('po-

larization propagator), g{q, cu). In general, we
can write this in the following way:

l =odd

g(q, &u) = II*(q, ~ (23)

4 g —.'(2I I)(p lf;lp», (p'p).
l =even

The sum over the z, 's requires many terms, but
they are easy to compute. The sum over the t, 's
requires very few terms and thus the computing
time is considerably reduced from the time it
takes using the more direct approach.

where" II*(q, u) =Q (all proper polarization
graphs). (A proper polarization diagram is a po-
larization diagram that cannot be separated into
two polarization diagrams by cutting a single inter-
action line. ) Some of the diagrams included in
II~(q, &u) are shown in Fig. 4. The lowest-order
proper polarization diagram Fig. 4{a}is just the
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TABLE I. Local t matrix and Coulomb potential (units: 4ne' = 181 eV A).

4me2

q2
t lOC

ph

4me2

q2
t lOC

ph
t lOC

ph I lOC

ph

0.2 ' 338
0.4 73.5
0.6 29.8
0.8 14.5
.i.0 7.71

344 1348
86.0 . 281
38.2 109
21,5 51.1
13.8 25.9

1376
344
153
86.0
55.1

3030
610
231
104
50.6

5382 5505
1053 1376
387 612
170 344
79.9 220

8401
1605
576
246
112

8601
2150
956
538
344

1.2 4 36
1.4 2.63
1.6 1.67
1.8 1.24
2.0 0.95

9 56 13.8
7.02 7.74
5.38 4.72
4.25 3.58
3.44 2.76

38,2
28. 1

21.5
17.0
13.8

25.3 86.0
13.2 63.2
7.71 48.4
6.05 38.2
4 67 31.0

37.6 153
17.9 112
10.0 86.0
8.28 68.0
6 43 55.1

49.9 239
21.4 175
11.5 134
10.2 106
7.91 86.0

2.2 0.79
24 069
26 060
2.8 0.53
3.0 0.47

2.84
2.39
2.04
1.76
1.53

2.33
2.06
1.81
1.59
1.42

1 1,4
9.56
8.14
7 02
6.12

4.03 25.6
3.64 21.5
3.21 18.3
2.82 15.8
2.51 13.8

5.69 45.5
5.27 38.2
4.67 32.6
4.08 28.1

3.65 24.5

7.26 71.1
6.89 59.7
6.12 50.9
5.35 439
4.79 38.2

3.2
3.4
3.6
3.8
4.0

0.42
0.38
0.34
0.31
0.28

1.34
1.19
1.06
0.95
0.86

1.27
1.14
1.03
0.93
0.85

5.38
4.76
4.25
3.81
3.44

2.25 12.1

2.02 10.9
1.83 9 56
1.66 8.58
1.51 7.74

3.28 21.5
2.94 19.1
2.66 17.0
2.42 15.3
2.21 13.8

4.30 33.6
3,86 29.8
3.50 26.5
3.19 23.8
2.91 21.5

5.0 0.18
6,0 0.13
7 0 0.10
8.0 0.07

0.55
0.38
0.28
0.22

0.55
0.39
0.29
0.22

2.20
1.53
1.12
0.86

0.97
0.70
0.51
0.39

4.95
3.44
2.S3
1.94

1.41
1.02
0.74
O.S6

8.81
6.12
4.49
3.44

1.8S . 13.8
1.34 9.56
097 7 02
0.73 5.38

Lindhard function" II,(q, &u),

II,(q, (u) = —2i 2,— G, (q+ k, (o+ ko) G, (k, ko), (24)

where G,(k) E1a is a four-momentum, k = (k, k, ) ] is
just the propagator for a free particle or hole of
momentum 4,

local t matrix, we are taking into account in an
approximate way some of the diagrams of Fig. 4.
This approximation is in keeping with the spirit
of the work by Hubbard, "Pines and Nozieres, '
Vashishta and Szngwx, "etc.

Generally, each of these theories, including the
one of the present paper, can be cast into the fol-
lowing form:

G, (k) =
e~;~+i&sgn(~k~-u, ) ll.(q, ~)

I —(4«'/q') E& -f(g) ]II.(q, ~) ' (27)
'E fp J

0 /2FI1

Our approximation for )((q, &u) involves the follow-
ing substitutions: We replace II*(q, ~) in the nu-
merator of Eq. (23) with II,(q, &u) and the term
(4«'/q')II*(q, ~) is replaced by the expression
f'„"(q)ll,(q, ~). The density-density response func-
tion in this theory becomes

X"(q, ~) = Il,(q, ~)/ E& —I,'„-(q)II.(q, ~) l.

where f(q) depends on the particular theory. In
Hubbard's approximation we have

f "(q) =q'/2(q'+ &,').
In the theory of Vashishta and Sing@i %e can
write f(q) in terms of their G(q),

f"(q) =G(q) (29)
Ill 'tile LB tlleo1'y, f(q) 1s glvell ill tern1s of tile lo-
cal t matrU,

Since exchange contributions and ladder diagrams
summed to all orders have been included in the

fLB( )
—'(4« /q ) fPh (q) q fl.oc( )4«'/q' 4«' ~" q ' (30)
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/~ X ~l'

It can be argued that our neglect of the frequency
dependence in our polarization potential is unjusti-
fied. Certainly, for intermediate q, q -k~, this
is so. On the other hand, for very large q, the
interacting particles are close together, and the
interaction is essentially instantaneous. For small
q, our theory goes over into the random-phase
approximation, which is known to be good in this
region.

(e)

FIG. 4. Typical proper polarization diagrams that are
contained in the operator Il~(q, e). In our calculation
we include the effects of the diagrams g)-(f), and others
like these~ in RD approximate %pay.

8, Dielectric response function and plasrnons

Once we are given the density-density response
function we can construct a generalized dielectric
response function. The two functions are related
as follows

&~(ct, ~) = I+ (4ve'/q') }((q,~). (31)

Substituting the expression for )((q, ro) in Eq. (33)
into Eq. (31) we have that

In the notation of Pines and Nozieres, ' t (q) is the
polarization potential. In Table II, some values
«r f (q), f (q), and f"(q) are given. In the ap-
proximations of Qashlshta alld Slngwl~ and Hub-
bard, f(q) tends monotonically to an asymptotic
value, whereas, in the LB theory, f(q) reaches
a maximum at q = 2hz and then drops off approach-
ing asymptotically to some finite value.

It should be noted that (4ve'/q') fLe(q), or eny oI
the other polarization potentials considered,
should be of short range in coordinate space.
From Table II it can be seen that I '„"(q) [see Eg.
(30) j must be of order q'/kz (q «Az) compared
with the Coulomb potential. This (4ve'/q') f (q)
is then our representation of the Pines polariza-
tion potential, which is meant to stimulate the
Landau f function for neutral systems (see the dis-
cussion in Pines and Nozidres').

1 —(4ve'/q')II*(@, (u)
'

Thus, in general the dielectric function can be
written as follows:

e(q, &u) =1 —(4we'/q')II~(j, ~).

e~s{q, (u) =1 —t"„'(q)II,(q, (u) . (33)

In RPA the dielectric function is given by

c"rA(q, &u) = 1 —(4se'/q') II,(q, ~) .

In the RPA it is well known that for momenta q
smaller than some typical cutoff momentum q,

In our approximation, the dielectric function be-
comes

TABLE II. Values for the functions f(q) defined in the paper.

LB VS H LB VS H LB VS H LB VS H LB VS H

q/a~ f(q) f(q) f(q) f(q) f(q) f(q) f(q) f(q) f(q) f(q) f(q) f(q) f(q) f(q) f(q)

0.2
04
1.0
1.4
2.0
3.0
6.0
8.0

0.02 0.01
0.15 0.04
0.44 0.22
0.63 0.37
0.72 0.54
0.69 0.64
0.66 0.71
0.68 0.73

0.02 0.02 0.01
0.07 0.18 0.04
0.25 0.53 0.24
0.33 0.72 0.41
0.40 0.80 0.62
0.45 0.77 0.75
049 0 75 085
0.49 0.74 0.87

0.02 0.02 0.01
0.07 0.21 0.04
0.25 0.59 0.25
0.33 0,79 0.44
0.40 0.85 0.68
0.45 0.82 0.84
0.49 0.80 0.95
0.49 0.80 0.96

0.02 0.02
0.07 0.23
0.25 0.64
0.33 0.84
0.40 0.88
0.45 0.85
OA9 0.83
0.49 0.84

0.01
0.05
0.26
OA7

0.72
0.90
1.01
1.03

0.02
0.07
0.25
0.33
OAO

0.45
0.49
0.49

0.02 0.01 0.02
0.25 Q.05 0.07
0.67 0.27 0.25
0.88 0.49 0.33
0.91 0.76 OAO

0.87 0.95 0.45
0 86 1.05 0 49
0.86 1.06 0.49



there exists a collective mode of the electron gas
called a plasmon. This mode appears as a pole in
the polarization propagator or as a zero of the di-
electric function. In the RPA a dispersion relation
for the plasmons can be derived from the condition
that

e (q, fd, ) = 0. (35)

~, =2Pe, [I+ '5(q'/P)' P",
where

4r
P = 0 4Voy'/'

m

The quantity r, is a dimensionless measure of the
average interparticle spacing defined by the rela-
tion

f '/3ff' = I/-;fff', .
If we let r, = x,a, where a, is the Bohr radius, a,
=0.5292 A, then

f;=(@ff)'f'/a, kr =1. 199/ak .r (36c)

The cutoff momentum q„ i.e. , the momentum value
for which strong Landau damping occurs, is de-
fined by the set of equations in which'

c(q„~, ) =0,

and

&d qqkf&/m +q~/3m. -

This, of course, only holds as long as there is no
damping, since damping of the plasmon tends to
smooth out the pole in )f(j, &d); thus, e(fl, &d) will
have no real zeroes. For small-momentum trans-
fers we find, in the RPA, that

3 q)'f /m
CO~

We can express this in terms of a dimensionless
parameter P which depends on the density and the
momentum transfer q' measured relative to kz (kz
is the Fermi momentum and er =kz'/2m is the Fer-
mi energy),

~"R=3Pe [I+(q /P)f(f+yP')]'» (38)

q
s ~ a~&/5

C

This was fitted to the momentum value at which
the plasmons merged with the particle-hole con-
tinuum. This gave for q,' the value

q,'=0.438' /~.

This works well in the density range 1 & ~, & 5.
Note, however, that this discussion depends upon
the q' term in e, , which is determined by the low-

q behavior of the corrections to the unscreened
Coulomb interaction in our effective interaction,
and we have no arguments that these are correctly
described. (See our discussion of the compressi-
bility in Sec. IV.)

C. Effective interaction

With our dielectric function we can construct our
effective interaction which interpolates between
both the large- and small-momentum transfer re-
gions. The effective interaction denoted byf, «(qf, +)
is given by

f,«(fl fo) =I,"„'(fl)/e" (fl, ~) .

In the limit of small q, we have that

f"'„'(q) =, 4ff8'/q',

where y was found to range between the values'
-0.51 and -0.58 over a range of densities such
that, 2 ~ x, ~ 5. The cutoff momentum for our theo-
ry will be lower than in the RPA. The cutoff mo-
mentum is the momentum transfer at which the
quasiparticle-hol. e excitation energy is equal to the
plasmon energy and thus-Landau damping can oc-
cur. Since our plasmons are lower in energy than
the plasmons in the RPA, our cutoff momentum
will lie below the cutoff of RPA.

We can obtain the cutoff momentum in the LB
theory by solving Efl. (37). However, it turns out
that we can determine the cutoff q,' by parametriz-
ing it in the following way:

Solving for q,'(q,'=q, /k~) we have

q,' =0.470','/' .

In the I B theory, there exist plasmons whose
dispersion relation is found by solving Efl. (35),
where we use our dielectric response function de-
fined in Efl. (33). In terms of the dimensionless
parameters of Efl. (36a) we have

e"R(fl, &d); «Rr" (fl, &d) = 1—,11,(fl, &d).

Thus, in the small-q limit our effective interaction
reduces to the RPA effective interaction

RPf& 4W8 /q
f»ff(I& ) jeff ( I& ) Rf&A'~

E, (Qq QP)

In the large-q limit, "
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loc

eff
+ 0 ~ + )f + ~ ~ ~

loc

)Ioc
+ 0 0 4 + 0

FIG. G. Our effective interaction formally sums to
all orders diagrams of the type shown here.

11,(q, ~) —~q~
'.

Furthermore, we know that f~"„'(q) drops off faster
than q ', thus,

+ I +
(

+ ~ ~

e"s(q, v) l.

In this limit, we see that

fsff(q~ ~)~fpa (q).

This is the result we have claimed in Sec. II will
occur for large-momentum transfers, j..e. , the
effects of screening for large q are negligible and
only the ladder sum of unscreened Coulomb inter-
actions will contribute in this limit. Figure 5

shows some of the diagrams contained in our ef-
fective interaction.

The diagrammatic expansion of f,«(q, ~) shown in
Fig. 5 does not make it clear how much we have
built into our effective interaction. We can write
an equation for the effective interaction in terms
of the proper polarization graphs. The integral
equation for t1118 cRD be written symbolically as

t„,(q, u)) =f"„'(q)+t"„'(q)II,(q, (u)t„,(q, cu).

Since the expression f"„'(q)II,(q, e) is an approxi-
mation to (4ve'/q')ll "(q, &u) we have included, in an
averaged sense, the contributions of the diagxams
of Fig. 4. From the structure of Eq. (42) we see
that our effective interaction has taken into ac-
count, only approximately because of our need to
RverRge ov6r tl16 Fermi 86a., the kinds of dl.agrams
shown in Fig. 6.

D. Dynamic and static form factors

FIG. 6. Diagrams that are included in our effective
interaction. Contributions from proper polarization
graphs, of a higher order than IIO(q, &) and graphs with

repeated Coulomb interactions are included only approx-
'.m ately.

tering cross sections obtained in energy-loss ex-
periments on solids. The cross section can. be
written as follows:

do
dQ
—=oS(q, co) .

x(q, ~) = 1 1
d&u'S q, ~')

M —V'+g, 'g M+V +Sf

(44)

If we express X(q, m) in terms of its real a.nd imag-
ina. ry parts

The dynamic form factor contains all of our infor-
mation about the many-body medium. The cross
section o contains the information about the probe.
If the probe is a beam of high-energy electrons,
then 6' 18 Just the Mott cross sect1on for the scRt-
tering of identical particles. For the case of x-ray
scattering this is just the Thomson cross section
for the scattering of photons off electrons.

The dynamic form factor acts as a, spectral den-
sity for the density-density response function
through the dispersion relation~

The dynamic form factor S(q, &u) is a quantity that
can be directly compared to experiment. S(q, z)
is proportional to the differential, inelastic-scat-

X(q, ~) = Hey(q, ~) +firn)((q, &o),

Imp(q, ~) = -w[S(q, ~) -S(q, -&o)] . (45)
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If we assume that the system is initially in its
ground state, then S(q, —(u) =0.

The poles of the density-density response func-
tion appear as singular structures in the dynamic
form factor, for small momenta, at the plasmon
frequency. For momentum values below the cutoff
momentum q, we can write the dynamic form fac-
tor as a sum of two terms'

I.O

0.8

3
~ 0.6

M

LB

S(q, ~) = S...(q, ~) +.S„(q,&o) . (48)
0.4

The first term is an incoherent contribution com-
ing from quasiparticle excitations. The second
term S„(q, &u) is the contribution coming from the
plasmon. For q &q„we can write this as follows:

S„(q,~) =[ Ig, I /V(q) ]5(~ —~,) (47)

where"'"

and

~g, ~

' = (~',/2~, )l'(q), (4'la)

S(q, &) =(&,/»P (q)]5(& —,&,) . (48)

V(q) = 4me2/q' . (47b)
I

The ~g ~' of Eq. (47a) is the lowest-order expres-
sion for the coupling of the plasmons to the parti-
cle-hole continuum derived by Dubois. " In this
region in which q &q„ the term S,„,(q, v) makes a
contribution of the order (q/kz)~ to S(q, &u) and can
be neglected. Thus, for q &q„S(q, &u) takes on a
simple form,

0.2

I I

I.Q 3.0 5.0 7.0 9.0
—flJ/O' F

FIG. V. Dynamic form factor for r,=2.0 and q/kz
=2.0. The dashed line corresponds to the data taken for
Be, r,=l.8, at q/k+=2. 1 (see Ref. 6).

Indeed, for q&q„ this is what one obtains when

Eq. (48) is plugged into Eq. (49). This same be-
havior, in the long-wavelength limit for the static
form factor, is present in the theory of the present
paper. For momentum values below the cutoff we
use Eq. (52) for the static form factor, and for
momentum values above the cutoff we integrate
Eq. (49) numerically.

The results for the dynamic form factor for var-
ious values of the momentum transfer and density
are shown in Figs. V-9. The results for the static
form factor are given in the Figs. 10-12 along with
the pair-correlation function defined below.

S(q) = — d(uS(q, (o) .
P 0

(49)

In this paper, we use our dispersion relation for
the plasmon frequency given by Eq. (88) for the
&u, that appears in Eq. (48).

The static form factor is obtained from the dy-
namic form factor by integrating over energy,

I.O

0.8
3. 0.6
v) Og

0.2

rs= I.O

I/k =0.8
F

p = ~a~ ap.
P

(51)

The static form factor S(q) is a, measure of the in-
stantaneous density correlations in the system. In
terms of the density fluctuation operator p„S(q)
can be written as

(5o)

where ~0) is the ground state of the system. We

can express p, in terms of the creation a~~ and an-
nihilation a~ operators in the following way:

I.O

0.8
3

0.6
~ 0+

0.2

I.O 2.0 3.0

{a)

= Cd/CF

= I.O

/Ic = I.8

lim S(q) =qa/2m' (52)

Thus, pS(q, ) is just the mean-square density fluc-
tuations of the system.

From general arguments, we know that

l.0 2.0 3.0 4.0 5.0 6.0 70
Cal/4 F

(b)
FIG. 8. Dynamic form factor calculated from RpA

and the theory of the present paper at r,=1.0 and (a)
q/k„=0. 8 and (b) q/k~=1. 8.
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1.0
0.83~ 0.6

M Gg

0.2

1.0 2.0 3.0

r =50

q/k =1.0

—/CF

I.Q-

0.8
0.6

V)
0.4
0.2

r =2.0

I I I

I.Q 2.0 3.0 4.0 5.0

(a)

1.0
0.8

3
~ 0.6

M 0+
0.2

r =50
q/k =1.8

FIG. 9. Dynamic form factor for r =5.0 for (a) q/k&
=1.0 and (b) q/k z——1.8.

-O.I6

-0.53

-0.2
Q4

-0.6-

I.o
0.8
0.6
Q4
0.2

0'SO.II
'=

rs =2.0

= rxk
F

I I I

2.0 3.0 4.0 5.0

F10. 11. (a) Static form factor $(k) for r =2.0. (b)

The pair-correlation function g(r) for r, = 2.0.

IO-

0.8
0.6

M 04
0.2

r =1.0

I I I

I.O 2.0 3.0 4.0 5.0

I.O-

0.8
0.6

M
0.4
0.2

r =5.0

I I

I,Q 2.0 3.0 4.0 5.0

I.O

0.8
0.6
0.4

0.28
0.24

O.l I / RpA
-o.o6 & I.Q 2.0-02-

-0.4-

r =10

I I I

3.0 4.0 5.0 . F

I.O

0.8
0.6
0.4
0.2

0.08-—~
-0.02

-0.2
-0.4
-0.6
-0.8

-0.92
-I.O
-I.2
-I.4

(a)

r =50

I I

.0 5.0

FIG. 10. (a) Static form factor $(k) calcul, ated from
the present theory for r~ =1.0. (b) The pair-correlation
function g(r) for r =1.0. The values for STLS, HPA,
and H are from Ref. 14. The LB curve is obtained by
the procedure outlined in the present paper.

-1.6
-1.70~
FIG. 12. (a) Static form factor $(4) for r, =5.0. (b)

The pair-correlation function g(r) for r~ = 5.0.



SHORT-RANGE CORRELATIONS IN THE ELECTRON GAS

E. Pair-correlation function

The instantaneous pair-correlation function g(r)
gives the probability of finding a particle at the
point R+r given that there is a particle at the
point R. It is related to the Fourier transform of
the static form factor and is given by the equation and

S(q, ~) q'
e" o & See

g(dcoS q, M & q, (d
0

(54b)

(54c)

3
g(r) =�1-

+2' dqq sin(qr)[S(q) —1] . lim du) '
~
e(q, &u) j'=S(q, ur)

0

IV. SUM RULES

Sum rules provide a check on the consistency of
a given theory of the electron gas. There are four
sum rules for the electron gas that we can express
in terms of the dynamic form factor and the dielec-
tric response function':

d&u +S(q, u&) =~ (54a)

The results for our pair-correlation function are
shown in the Figs. 10-12. We compare them with
the results obtained in RPA, Hubbard's approxi-
mation, and with the results of Singwi et al.
(STLS).' One of the things we note is that our g(r)
does not go negative for any values of the density
no matter what the value of x is. Whereas in the
other theories, g(r) becomes negative for small r
at low densities. That our g(r) remains positive
for small x at all densities is clearly a conse-
quence of the short-range correlations we have
built into the electron gas, since we employ here
the same type of formalism as the other theories,
but with a different effective interaction.

If we compare the results found for g(r) in this
paper and the original paper of Lowy and Brown,
we find that the pair-correlation functions are es-
sentially the same. One of the differences is that
our g(r) is larger for small values of x The rea.-
son is that in the paper of LB, the plasmon contri-
bution for small separations is neglected. In our
results, we have included the effects of the plas-
mons on the small-x values of our g(r). If the
plasmon contribution is left out, the results we
obtain for g(r) are the same. Since the results for
g(r) are the same for two different approaches
used, it becomes clear that g(r) remains positive
because of the physics we built into the pair-cor-
relation function and that it is not due to the cal-
culational scheme used. "' (In the Lowy-Brown
formalism, g(r) was expressed as the absolute
value squared of the ratio of correlated to uncorre-
lated wave functions and was necessarily positive;
here we employ a formalism which can easily give
negative values of g(r), depending upon the effec-
tive interaction. )

The s2 of Eq. (54d) is the square of the isothermal
sound velocity in the electron gas.

Equation (54a) is the f-sum rule and is a conse-
quence of particle conservation. The f-sum rule
caA. be obtained from the equation of motion of the
density fluctuations operator p, . The derivation of
this rule depends upon whether the density fluctua-
tion operator commutes with the interaction part
of the Hamiltonian. In our theory, we have an ef-
fective Hamiltonian given in second quantization as

ff„,= Pep~a~+ —g t'"(q)a „a,a~a~. (55)
1

P P, k, q

The t-matrix in Eq. (55) is a local operator and it
commutes with the density fluctuation operator.
The E~ are just the free-particle energies given by
e&--p /2m. Since p, commutes with our interaction
term the f-sum rule must be satisfied in our theo-
ry.
. For momentum values below the cutoff, plas-
mons make the dominant contribution to the dy-
namic form factor. Thus, for q &q„plasmons ex-
haust the f-sum rule. For momenta greater than
the cutoff, Eq. (54a) was integrated numerically
and the sum rule was satisfied exactly (where
exactly means that it was satisfied within the range
of numerical error introduced by the integration).

The second sum rule Eq. (54b) is the perfect
screening sum rule. This rule is satisfied exactly.
The reason for this is that our effective interaction
t~h'(q) goes to the Coulomb interaction v(q) as
q- 0, so that in this limit the plasmons, etc. in
our theory become identical with those in RPA.

The third sum rule is called the conductivity sum
rule. This sum rule follows from the f-sum rule
and the analytic properties of e(q, +). By direct
numerical computation, this sum rule was also
found to be satisfied exactly, indicating that we
have not violated the known analytic behavior of
e(q, &u).

The sum rule of Eq. (54d) was checked by LB
and it was found to be violated for all densities. A
consistent treatment of the compressibility has
proved to be difficult in the papers of Singwi et al. '
and in LB (Ref. 2). Vashishta and Singwi" fixed
matters up by taking functional derivatives with
respect to the density, but their method is not very
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transparent.
We follow here the discussion of Pines and

Nozieres. ' The compressibility can be defined
from the behavior of the screened response func-
tion

limy„(q, 0) = -p/ms', (56)
q~ O

where s is the velocity of sound, and is directly
related to the compressibility K. For our pur-
pose, the most useful way to express the relation-
ship is

P

P

x"-/)4 = s'/s' ) (56a) P

where K"" is the compressibility and s, the sound
velocity of the noninteracting gas. The screened
response function, in the polarization approach,
can be expressed in terms of the function f(q) in
the following way:

P

Since

( )
Iip(q (d)

1+ (4ve2/q2)f(q)II, (q, (p)
' (56b)

(c)

(56c)

Equations (56), (56a), and (56d) yield, in the LB
approximation

Kfree

K q~0
(56e)

Let us stress that Eq. (56d) is a very general ex-
pression in the polarization potential approach. In
the LB approach, f 2'2'(q) can be expanded for small
g as

4me' !q l' Iq I'
f '„"(q), 1+, I'+0, +', (56f)q' k2~ J

so that

=1+y ~~ =1+y —~, .

More generally, an expansion of (4ve2/(12)f(q)
couM be carried out to give a y for any given po-
lar ization potential.

One can also determine the compressibility di-
rectly by differentiating the energy per particle
with respect to the density, or equivalently with
respect to r, [see Eq. (5.128) of Hef. 3],

Kfree g2~(+ f g~(+ )
l((22 4) ( 3) 1(o2 3) ~ sl (57)s g&2 &

s
s s

The value found for (4""/14 obtained by differentiat-

we have, in general, that

X..(t), ()); -. } 1 * f(4)( * } (3()4)

FIG. 13. Landau amplitude f&&, in (a) would be used
to obtain the compressibility from Eq. (56g). The con-
tributions to the compressibility from diagrams of
the type shown in (b) and (c) would arise in the cal-
culation of the compressibility from Eq. (57).

ing the LB energy is very different from the values
given by Eq. (56g).

As is clear from the discussion in Chap. 5 of
Hef. 3, the calculation of )p from Eq. (56g) can
equivalently be expressed as calculating the com-
pressibility from a Landau amplitude f», , such as
shown in Fig. 13(a). On the other hand, the double
differentiation of the energy would, as discussed
in Hef. 3, bring in the amplitudes of Figs. 13(b)
and 13(c).

The LB calculations gave values of y between
-0.51 and -0.58, whereas replacing ts1„"(q) in Fig.
13(a) by the Coulomb potential would give y = -0.25.
The la,rger value of ~y~ in the LB theory and in
our calculation can be traced back to the averaging
procedure for the f matrix, Eq. (21), which is in-
accurate for momenta ~k~.

On the other hand, double differentiation of the
energy gives results that are not very different
from those obtained by differentiating the BPA en-
ergy. Thus, we believe that we understand the in-
consistency between compressibilities calculated
from Eq. (56) [which is equivalent to the compres-
sibility sum rule, Eq. (54d)j and the results from
differentiating the calculated energy.

Our calculation could be extended using the for-
malism of Babu and Brown" so as to remove the
discrepancy, and this would give an improved
treatment of the compressibility, although it would
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be difficult to include the process of Fig. 13(c). In
any case, our formalism is clearly designed to get
the high-q behavior, q» k~, correct. Moreover,
any extensions should include a proper treatment
of the effective mass m*. Proper treatment of the
effective mass would involve the inclusion of the
current-density response. ' Each of these consid-
erations are, however, outside the scope of the
present paper.

I et us note that the y one has in Eq. (56g) is the
same y one finds in the plasmon dispersion rela-
tion, Eq. (38). Thus, in a very simple way the
compressibility and the plasmon dispersion are
related. This relationship is a consequence of the
use of a static interaction. Our t matrix, or
equivalently our function f(q), is a function only of
the momentum transfer and not a function of the
frequency. Clearly, since the limits of the dielec-
tric function to obtain the compressibility and the
plasmon dispersion ar e dif ferent, one would ex-
pect an additional factor in the limit for the plas-
mon dispersion arising from the frequency depen-
dence of the interaction. The same expression of
Eq. (56g) would result for the compressibility
since & is set equal to zero before the limit as
q-0 is taken. However, to the extent that one can
assume the interaction to be instantaneous, a
measure of the plasmon dispersion would also be
a measure of the compressibility.

For the pair-correlation function, we have an
additional check on the consistency of our calcula. -
tion. We have that"

(56)

If we take the Fourier transform of g(r) —1 this
gives

In the limit as P - 0,

lim d'x r —1e "'= dr gr —1

tively. Most of this error is due to the errors in-
volved in the small-q approximation for S(q) and

the numerical integration errors made in the cal-
culation of S(q) from S(q, &u) at the momentum value
where the plasmon just merges with the particle-
hole continuum.

V. CONCLUDING REMARKS

In this paper, we have studied the effects of
short-range correlations on the properties of an
electron gas. Our approach was to construct a
density-density response function from which we
were able to study the properties of an electron
gas at meta, llic densities. One of the quantities
studied was the pair-correlation function. '/he
method we used to calculateg(r) was different
from that used by LB, however, the results we
found were essentially the same. The results
turned out to be independent of the method used in-
dicating that the physics was responsible for the
result and not some artifact of the calculation.

The dynamic form factor we calculated can be
compared with experiment. Recent experiments
indicate that the dynamic form factor has more
structure than any of the theories, including the
present one, can explain. There is a feature of
the experiments that our theory might be used to
explain. In a paper by Platzman and Eisenberger, '
it was found that the peak in the scattering cross
section occurred at a lower value of the energy
than predicted by the BPA. Platzman and Eisen-
berger suggested that this may in fact be due to
short-range correlations in the static form factor.
We see very clearly that this is what happens when
short-range correlations are included in the elec-
tron gas since this leads to a plasmon energy that
is lower than the plasmon energy of BPA, although
this downward displacement is not all due to the
high-q behavior of the effective intera. ction in our
theory. A comparison with some experimental re-
sults is shown in Fig. 8.

In conclusion, we feel that the theory presented
in this paper gives a rather satisfactory micro-
scopic description of the short-range correlations
in the electron ga,s.

limS(p) = 0.
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