200 lines
6.7 KiB
Fortran
200 lines
6.7 KiB
Fortran
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
MODULE COULOMB_LOG
|
||
|
!
|
||
|
! This module provides Coulomb logarithms
|
||
|
!
|
||
|
USE ACCURACY_REAL
|
||
|
!
|
||
|
CONTAINS
|
||
|
!
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
FUNCTION COU_LOG(I_CL,DMN,T,RS)
|
||
|
!
|
||
|
! This function computes the Coulomb logarithm Log(Gamma)
|
||
|
!
|
||
|
! References: (1) F. L. Hinton, chapter 1.5, in "Handbook of Plasma Physics",
|
||
|
! Eds. M. N. Rosenbluth and R. Z. Sagdeev,
|
||
|
! Vol.1 (1983)
|
||
|
! (2) https://ocw.mit.edu/courses/nuclear-engineering/
|
||
|
! 22-611j-introduction-to-plasma-physics-i-fall-2006/
|
||
|
! readings/chap3.pdf
|
||
|
! (3) http://homepages.cae.wisc.edu/~callen/chap2.pdf
|
||
|
! (4) https://www.nrl.navy.mil/ppd/sites/www.nrl.navy.mil.ppd/
|
||
|
! files/pdfs/NRL_FORMULARY_18.pdf
|
||
|
!
|
||
|
! Input parameters:
|
||
|
!
|
||
|
! * I_CL : Switch to compute the Coulomb logarithm
|
||
|
! I_CL = 1 --> using reference (1)
|
||
|
! I_CL = 2 --> using reference (2)
|
||
|
! I_CL = 3 --> using reference (3)
|
||
|
! I_CL = 4 --> using reference (4)
|
||
|
! I_CL = 5 --> using reference (5)
|
||
|
! * DMN : dimension of the system
|
||
|
! DMN = '3D'
|
||
|
! DMN = '2D'
|
||
|
! DMN = '1D'
|
||
|
! * T : system temperature in SI
|
||
|
! * RS : Wigner-Seitz radius (in units of a_0)
|
||
|
!
|
||
|
!
|
||
|
! Output parameters:
|
||
|
!
|
||
|
! * COU_LOG : Coulomb logarithm Log(Gamma)
|
||
|
!
|
||
|
!
|
||
|
! Author : D. Sébilleau
|
||
|
!
|
||
|
! Last modified : 11 Jun 2020
|
||
|
!
|
||
|
!
|
||
|
USE REAL_NUMBERS, ONLY : ONE,TWO,THIRD
|
||
|
USE CONSTANTS_P1, ONLY : H_BAR,M_E,E,EPS_0,COULOMB,K_B
|
||
|
USE PI_ETC, ONLY : PI_INV
|
||
|
USE SCREENING_VEC, ONLY : DEBYE_VECTOR
|
||
|
USE ENE_CHANGE, ONLY : EV
|
||
|
!
|
||
|
IMPLICIT NONE
|
||
|
!
|
||
|
CHARACTER*2 DMN
|
||
|
!
|
||
|
INTEGER I_CL
|
||
|
!
|
||
|
REAL*8 T,RS
|
||
|
REAL*8 COU_LOG,G,LG
|
||
|
REAL*8 KD_SI,V_TH,T_TH,LD,B0,B1,B2,BM,N0
|
||
|
!
|
||
|
! Computing the Debye vector
|
||
|
!
|
||
|
CALL DEBYE_VECTOR(DMN,T,RS,KD_SI) !
|
||
|
!
|
||
|
V_TH=DSQRT(TWO*K_B*T/M_E) ! thermal velocity in 3D
|
||
|
T_TH=K_B*T/EV ! temperature in eV
|
||
|
!
|
||
|
IF(I_CL.EQ.1) THEN !
|
||
|
!
|
||
|
LD=ONE/KD_SI ! Spitzer value
|
||
|
B0=E*E*THIRD/(K_B*T) !
|
||
|
COU_LOG=DLOG(LD/B0) ! ref. (2) eq. (5)
|
||
|
!
|
||
|
ELSE IF(I_CL.EQ.2) THEN !
|
||
|
!
|
||
|
G=DSQRT(EPS_0*T/(N0*E*E))*M_E*V_TH*V_TH/COULOMB ! ref. (2) eq. (3.63)
|
||
|
COU_LOG=DLOG(G) !
|
||
|
!
|
||
|
ELSE IF(I_CL.EQ.3) THEN !
|
||
|
!
|
||
|
B1=KD_SI*KD_SI*PI_INV/(12.0E0_WP*N0) !
|
||
|
B2=H_BAR/(TWO*M_E*V_TH) !
|
||
|
BM=MAX(B1,B2) ! ref. (3) eq. (2.11)
|
||
|
G=KD_SI/BM !
|
||
|
COU_LOG=DLOG(G) !
|
||
|
!
|
||
|
ELSE IF(I_CL.EQ.4) THEN !
|
||
|
!
|
||
|
LG=23.5E0_WP - DLOG(DSQRT(N0)*(T_TH**(-1.25E0_WP))) - & !
|
||
|
DSQRT(1.0E-5_WP + (DLOG(T_TH)-TWO)**2 / 16.0E0_WP) !
|
||
|
COU_LOG=LG !
|
||
|
!
|
||
|
ELSE IF(I_CL.EQ.5) THEN !
|
||
|
!
|
||
|
CONTINUE
|
||
|
!
|
||
|
END IF !
|
||
|
!
|
||
|
END FUNCTION COU_LOG
|
||
|
!
|
||
|
!
|
||
|
!=======================================================================
|
||
|
!
|
||
|
FUNCTION DALI_CL_3D(X)
|
||
|
!
|
||
|
! This function computes Daligault' expression of the Coulomb logarithm
|
||
|
!
|
||
|
!
|
||
|
! Reference: (1) J. Daligault, Phys. Rev. Lett. 119, 045002 (2017)
|
||
|
!
|
||
|
!
|
||
|
! Input parameters:
|
||
|
!
|
||
|
! * X : dimensionless factor --> X = q / (2 * k_F)
|
||
|
!
|
||
|
!
|
||
|
! Note: It is defined as
|
||
|
!
|
||
|
! / A 3
|
||
|
! | q
|
||
|
! CL = | ---------------- dq with q the screening vector
|
||
|
! | 2 2 2 s
|
||
|
! / 0 ( q + q )
|
||
|
! s
|
||
|
! _____________
|
||
|
! /
|
||
|
! and A ~ k \ / 4 Theta / 3 with Theta the degeneracy parameter
|
||
|
! F \/
|
||
|
!
|
||
|
!
|
||
|
! We use here the fact that CL writes
|
||
|
! _ _
|
||
|
! | 2 | A
|
||
|
! | q |
|
||
|
! 1 | s ( 2 2 ) |
|
||
|
! --- | ----------- + Log( q + q ) |
|
||
|
! 2 | 2 2 ( s ) |
|
||
|
! | q + q |
|
||
|
! |_ s _| 0
|
||
|
!
|
||
|
!
|
||
|
! Author : D. Sébilleau
|
||
|
!
|
||
|
!
|
||
|
! Last modified : 12 Oct 2020
|
||
|
!
|
||
|
!
|
||
|
USE MATERIAL_PROP, ONLY : RS
|
||
|
USE EXT_FIELDS, ONLY : T
|
||
|
!
|
||
|
USE REAL_NUMBERS, ONLY : ONE,FOUR,HALF,THIRD
|
||
|
USE FERMI_SI, ONLY : KF_SI
|
||
|
!
|
||
|
USE PLASMON_SCALE_P, ONLY : NONID
|
||
|
USE SCREENING_TYPE
|
||
|
USE SCREENING_VEC
|
||
|
!
|
||
|
IMPLICIT NONE
|
||
|
!
|
||
|
REAL (WP), INTENT(IN) :: X
|
||
|
REAL (WP) :: DALI_CL_3D
|
||
|
REAL (WP) :: TH
|
||
|
REAL (WP) :: KS,DQT2,NUM,DEN
|
||
|
REAL (WP) :: INT_0,INT_A
|
||
|
!
|
||
|
REAL (WP) :: LOG
|
||
|
!
|
||
|
TH = ONE / NONID ! Theta
|
||
|
DQT2 = KF_SI * KF_SI * FOUR * THIRD * TH ! (upper integration bound)^2
|
||
|
!
|
||
|
! Computing the screening vector
|
||
|
!
|
||
|
IF(SC_TYPE == 'NO') THEN !
|
||
|
CALL SCREENING_VECTOR('TF','3D',X,RS,T,KS) !
|
||
|
ELSE !
|
||
|
CALL SCREENING_VECTOR(SC_TYPE,'3D',X,RS,T,KS) ! in SI
|
||
|
END IF !
|
||
|
!
|
||
|
NUM = KS * KS !
|
||
|
DEN = NUM + DQT2 !
|
||
|
!
|
||
|
INT_0 = HALF * ( ONE + LOG(NUM) ) !
|
||
|
INT_A = HALF * ( NUM / DEN + LOG(DEN) ) !
|
||
|
!
|
||
|
DALI_CL_3D = INT_A - INT_0 !
|
||
|
!
|
||
|
END FUNCTION DALI_CL_3D
|
||
|
!
|
||
|
END MODULE COULOMB_LOG
|