MsSpec-DFM/New_libraries/DFM_library/UTILITIES_LIBRARY/smoothing.f90

706 lines
30 KiB
Fortran
Raw Normal View History

2022-02-02 16:19:10 +01:00
!
!=======================================================================
!
MODULE SMOOTHING
!
! This module contains smoothing routines for curves
USE ACCURACY_REAL
!
CONTAINS
!
!=======================================================================
!
SUBROUTINE SMOOFT(Y,N,PTS)
!
! This subroutine smoothes an array Y of length N, with a window
! whose full width is of order PTS neighboring points
!
! Based on J-P Moreau's implementation of a routine from
! "Numerical Recipes" by W.H. Press, B. P. Flannery,
! S.A. Teukolsky and W.T. Vetterling, Cambridge
! University Press, 1986
!
! Note: the grid is assumed to be equally spaced
!
!
! Input parameters:
!
! * Y : function to be smoothed
! * N : size of array Y
! * PTS : number of neighbouring points taken into account
!
!
! Output parameters:
!
! * Y : smoothed function
!
!
! Last modified (DS) : 16 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO,ONE,FOURTH
!
IMPLICIT NONE
!
INTEGER, PARAMETER :: NMAX = 2048 ! double of maximum sample size
!
INTEGER, INTENT(IN) :: N,PTS
!
INTEGER :: LOGF
INTEGER :: M,NMIN
INTEGER :: J,MO2,K
!
REAL (WP), INTENT(INOUT) :: Y(NMAX)
!
REAL (WP) :: CONST,Y1,YN,RN1
REAL (WP) :: FAC
!
REAL (WP) :: FLOAT,MAX
!
LOGF = 6 ! log file unit
!
M = 2 !
NMIN = N + 2 * PTS !
!
1 IF(M < NMIN) THEN !
M = 2 * M !
GO TO 1 !
END IF !
!
IF(M > NMAX) THEN !
WRITE(LOGF,10) !
STOP !
END IF !
!
CONST = FLOAT((PTS / M)**2) !
Y1 = Y(1) !
YN = Y(N) !
RN1 = ONE / FLOAT(N-1) !
!
DO J = 1, N ! \
Y(J) = Y(J) - RN1 * ( Y1 * FLOAT(N-J) + YN* FLOAT(J-1) ) ! > remove linear trend
END DO ! /
!
IF(N+1 <= M) THEN !
DO J = N+1, M !
Y(J) = ZERO !
END DO !
END IF !
!
MO2 = M / 2 !
!
CALL REALFT(Y,MO2,1) ! Fourier transform
!
Y(1) = Y(1) / FLOAT(MO2) !
FAC = ONE !
!
DO J = 1, MO2-1 !
K = 2 * J + 1 !
IF(FAC /= ZERO) THEN !
FAC = MAX(ZERO,(ONE - CONST * FLOAT(J)**2) / MO2) !
Y(K ) = FAC * Y(K) !
Y(K+1) = FAC * Y(K+1) !
ELSE !
Y(K) = ZERO !
Y(K+1) = ZERO !
END IF !
END DO !
!
FAC = MAX(ZERO,(ONE - FOURTH * FLOAT(PTS**2)) / MO2) ! last point
Y(2) = FAC * Y(2) !
!
CALL REALFT(Y,MO2,-1) ! inverse Fourier transform
!
DO J = 1, N ! restore linear trend
Y(J) = RN1 * (Y1 * FLOAT(N-J) + YN * FLOAT(J-1)) + Y(J) !
END DO !
!
! Formats
!
10 FORMAT(5X,'<<<<< SAMPLE TOO LARGE: INCREASE NMAX >>>>>',/, &
5X,'<<<<< IN SUBROUTINE SMOOFT (UTILITIES) >>>>>',//)
!
CONTAINS
!
!-----------------------------------------------------------------------
!
SUBROUTINE FOUR1(DATA,NN,ISIGN)
!
! This subroutine replaces DATA(1:2*NN) by:
!
! * its discrete Fourier transform if ISIGN is 1
! * NN times its inverse discrete Fourier transform if ISIGN is -1
!
! DATA is either:
!
! * a complex array of length NN
! * a real array of length 2*NN
!
! Warning: NN MUST be an integer power of 2 (this is not checked for!)
!
!
!
! Last modified (DS) : 16 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO,ONE,TWO,HALF
USE PI_ETC, ONLY : PI
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: NN,ISIGN
!
INTEGER :: N,J,I,M
INTEGER :: MMAX,ISTEP
!
REAL (WP), INTENT(INOUT) :: DATA(2*NN)
!
REAL (WP) :: TEMPR,TEMPI
REAL (WP) :: THETA,WI,WPI,WPR,WR,WTEMP !for the trigonometric recurrences
!
REAL (WP) :: FLOAT,SIN
!
N = 2 * NN !
J = 1 !
!
DO I = 1, N, 2 ! this is the bit-reversal section of the routine
IF(J > I)THEN !
TEMPR = DATA(J) ! exchange the two complex numbers
TEMPI = DATA(J+1) !
DATA(J) = DATA(I) !
DATA(J+1) = DATA(I+1) !
DATA(I) = TEMPR !
DATA(I+1) = TEMPI !
END IF !
M = NN !
1 IF((M > 2) .AND. (J > M)) THEN !
J = J - M !
M = M / 2 !
GO TO 1 !
END IF !
J = J + M !
END DO !
!
mmax = 2 ! here begins the Danielson-Lanczos
! ! section of the routine
2 IF (N > MMAX) THEN ! outer loop executed log2 NN times.
! !
ISTEP = 2 * MMAX !
THETA = TWO * PI / FLOAT(ISIGN * MMAX) ! initialize for the trigonometric recurrence.
WPR = - TWO * SIN(HALF * THETA)**2 !
WPI = SIN(THETA) !
WR = ONE !
WI = ZERO !
! !
DO M =1, MMAX, 2 ! here are the two nested inner loops.
DO I=M,N,ISTEP !
J = I + MMAX ! this is the Danielson-Lanczos formula:
TEMPR = WR * DATA(J) - WI * DATA(J+1) !
TEMPI = WR * DATA(J+1) + WI * DATA(J) !
DATA(J) = DATA(I) - TEMPR !
DATA(J+1) = DATA(I+1) - TEMPI !
DATA(I) = DATA(I) + TEMPR !
DATA(I+1) = DATA(I+1) + TEMPI !
END DO !
WTEMP = WR ! trigonometric recurrence.
WR = WR * WPR - WI * WPI + WR !
WI = WI * WPR + WTEMP * WPI + WI !
END DO !
! !
MMAX = ISTEP !
GO TO 2 ! not yet done.
!
END IF ! all done.
!
END SUBROUTINE FOUR1
!
!-----------------------------------------------------------------------
!
SUBROUTINE REALFT(DATA,N,ISIGN)
!
! This subroutine calculates the Fourier transform of a set of
! N real-valued data points.Replaces this data (which is stored in
! array DATA(1:N)) by the positive frequency half of its complex Fourier
! transform. The real-valued first and last components of the
! complex transform are returned as elements DATA(1) and DATA(2),
! respectively. N must be a power of 2. This routine also calculates
! the inverse transform of a complex data array if it is the transform of real
! data. (Result in this case must be multiplied by 2/N.)
!
!
!
! Last modified (DS) : 16 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,HALF
USE PI_ETC, ONLY : PI
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: N,ISIGN
INTEGER :: I,I1,I2,I3,I4,N2P3
!
REAL (WP), INTENT(INOUT) :: DATA(N)
!
REAL (WP) :: C1,C2
REAL (WP) :: H1I,H1R,H2I,H2R
REAL (WP) :: WIS,WRS
REAL (WP) :: THETA,WI,WR ! for the trigonometric
REAL (WP) :: WPI,WPR,WTEMP ! recurrences
!
THETA = PI / FLOAT(N / 2) ! initialize the recurrence.
C1 = HALF !
!
IF(ISIGN == 1) THEN !
C2 = - HALF !
CALL FOUR1(DATA,N/2,+1) ! the forward transform is here.
ELSE !
C2 = HALF ! otherwise set up for an inverse transform.
THETA = - THETA !
END IF !
!
WPR = - TWO * SIN(HALF * THETA)**2 !
WPI = SIN(THETA) !
WR = ONE + WPR !
WI = WPI !
N2P3 = N + 3 !
!
DO I = 2, N / 4 ! case I=1 done separately below.
I1 = 2 * I - 1 !
I2 = I1 + 1 !
I3 = N2P3 - I2 !
I4 = I3 + 1 !
WRS = WR !
WIS = WI !
H1R = C1 * (DATA(I1) + DATA(I3)) ! \
H1I = C1 * (DATA(I2) - DATA(I4)) ! > the two separate transforms
H2R = - C2 * (DATA(I2) + DATA(I4)) ! > are separated out of DATA
H2I = C2 * (DATA(I1) - DATA(I3)) ! /
!
DATA(I1) = H1R + WRS * H2R - WIS * H2I ! \
DATA(I2) = H1I + WRS * H2I + WIS * H2R ! > here they are recombined
DATA(I3) = H1R - WRS * H2R + WIS * H2I ! > to form the true transform
DATA(I4) = - H1I + WRS * H2I + WIS * H2R ! / of the original real data
!
WTEMP = WR ! the recurrence.
WR = WR * WPR - WI * WPI + WR !
WI = WI * WPR + WTEMP * WPI + WI !
END DO !
!
IF(ISIGN == 1) THEN !
H1R = DATA(1) !
DATA(1) = H1R + DATA(2) ! squeeze the first and last data together
DATA(2) = H1R - DATA(2) ! to get them all within the original array
!
ELSE !
H1R = DATA(1) !
DATA(1) = C1 * (H1R + DATA(2)) !
DATA(2) = C1 * (H1R - DATA(2)) !
CALL FOUR1(DATA,N/2,-1) ! This is the inverse transform
END IF ! for the case ISIGN = -1
!
END SUBROUTINE REALFT
!
END SUBROUTINE SMOOFT
!
!=======================================================================
!
SUBROUTINE TSAVGOL(Y,N)
!
! This subroutine smoothes an array Y of length N, using
! a Savitzky-Golay filter
!
! Based on J-P Moreau's implementation of a routine from
! "Numerical Recipes" by W.H. Press, B. P. Flannery,
! S.A. Teukolsky and W.T. Vetterling, Cambridge
! University Press, 1986
!
! Note: the grid is assumed to be equally spaced
!
!
! Input parameters:
!
! * Y : function to be smoothed
! * N : size of array Y
!
!
! Output parameters:
!
! * Y : smoothed function
!
!
! Last modified (DS) : 16 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO
!
IMPLICIT NONE
!
INTEGER, PARAMETER :: NMAX = 2048 ! double of maximum sample size
INTEGER, PARAMETER :: NP = 1000 !
!
INTEGER, INTENT(IN) :: N
!
INTEGER :: NL,NR,M
INTEGER :: INDEX(NP)
INTEGER :: I,J
!
REAL (WP), INTENT(INOUT) :: Y(NMAX)
!
REAL (WP) :: YSAVE(NMAX)
REAL (WP) :: C(NP)
!
YSAVE = Y ! save unsmoothed signal
!
NL = 5 ! \
NR = 5 ! > see SAVGOL
M = 4 ! /
!
INDEX(1) = 0 ! seek shift index for given case NL, NR, M
! ! (see SAVGOL)
J = 3 !
DO I = 2, NL+1 !
INDEX(I) = I - J !
J = J + 2 !
END DO !
! ! (see SAVGOL)
J = 2 !
DO I = NL+2, NL+NR+1 !
INDEX(I) = I - J !
J = J + 2 !
END DO !
!
! Calculate Savitzky-Golay filter coefficients
!
CALL SAVGOL(C,NL+NR+1,NL,NR,0,M) !
!
! Apply filter to input data
!
DO I = 1, N - NR !
Y(I) = ZERO !
DO J = 1, NL + NR + 1 !
IF(I + INDEX(J) > 0) THEN ! skip left points that do not exist
Y(I) = Y(I) + C(J) * YSAVE(I+INDEX(J)) !
END IF !
END DO !
END DO !
!
CONTAINS
!
!-----------------------------------------------------------------------
!
SUBROUTINE SAVGOL(C,NP,NL,NR,LD,M)
!
! This subroutine returns in C(1:NP), in wrap-around order
! (see reference) consistent with the argument RESPNS
! in routine CONVLV, a set of Savitzky-Golay filter coefficients.
!
!
! Based on J-P Moreau's implementation of a routine from
! "Numerical Recipes" by W.H. Press, B. P. Flannery,
! S.A. Teukolsky and W.T. Vetterling, Cambridge
! University Press, 1986
!
!
! Input parameters:
!
! * NL : number of data points to the left of each point > to include in the filter
! * NR : number of data points to the right of each point >
! the total number of data points used NL + NR + 1.
! * LD : order of the derivative desired
! LD = 0 for smoothed function
! LD = 1 for smoothed first derivative of the function
! * M : order of the smoothing polynomial
! equal to the highest conserved moment
! usual values are M = 2 or M = 4
! Lower values for M will produce smoother results
! but may introduce bias
! Higher values for M will reduce the filter bias
! but may "over fit" the data and give a noisier result
!
!
! Output parameters:
!
! * C : Savitzky-Golay filter coefficients
! * NP : size of the C array
!
!
! Last modified (DS) : 16 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO,ONE
!
IMPLICIT NONE
!
INTEGER, PARAMETER :: MMAX = 6
!
INTEGER, INTENT(IN) :: NL,NR,LD,M
INTEGER, INTENT(IN) :: NP
!
INTEGER :: LOGF
INTEGER :: D,ICODE,IMJ,IPJ
INTEGER :: J,K,KK,MM
INTEGER :: INDX(MMAX+1)
!
REAL (WP), INTENT(OUT) :: C(NP)
!
REAL (WP) :: FAC,SUM
REAL (WP) :: A(MMAX+1,MMAX+1),B(MMAX+1)
!
REAL (WP) :: FLOAT,MIN
!
LOGF = 6 ! log file unit
!
! Testing the arguments
!
IF(NP < NL+NR+1 .OR. NL < 0 .OR. NR < 0 .OR. LD > M .OR. &
M > MMAX .OR. NL+NR < M) THEN !
WRITE(LOGF,10)
STOP
END IF !
!
! Set up the normal equations of the desired least squares fit
!
DO IPJ = 0, 2 * M !
SUM = ZERO !
IF(IPJ == 0) SUM = ONE !
DO K = 1, NR !
SUM = SUM + FLOAT(K)**IPJ !
END DO !
DO K = 1, NL !
SUM = SUM + FLOAT(-K)**IPJ !
END DO !
MM = MIN(IPJ,2*M-IPJ) !
DO IMJ = -MM, MM, 2 !
A(1+(IPJ+IMJ)/2,1+(IPJ-IMJ)/2) = SUM !
END DO !
END DO !
!
! Solve them: LU decomposition.
!
CALL LUDCMP(A,M+1,MMAX+1,INDX,D,ICODE) !
!
DO J = 1, M+1 !
B(J) = ZERO !
END DO !
!
! Right-hand side vector is unit vector,
! depending on which derivative we want
!
B(LD+1) = ONE !
!
! Backsubstitute, giving one row of the inverse matrix
!
CALL LUBKSB(A,M+1,MMAX+1,INDX,B) !
!
! Zero the output array (it may be bigger
! than the number of coefficients)
!
DO KK = 1 ,NP !
C(KK) = ZERO !
END DO !
!
! Each Savitzky-Golay coefficient is the dot product
! of powers of an integer with the inverse matrix row
!
DO K = -NL, NR !
SUM = B(1) !
FAC = ONE !
DO MM = 1, M !
FAC = FAC * K !
SUM = SUM + B(MM+1) * FAC !
END DO !
KK = MOD(NP-K,NP) + 1 ! Store in wrap-around order
C(KK) = SUM !
END DO !
!
! Formats:
!
10 FORMAT(5X,'<<<<< BAD ARGS IN SAVGOL >>>>>',//) !
!
END SUBROUTINE SAVGOL
!
!-----------------------------------------------------------------------
!
SUBROUTINE LUDCMP(A,N,NP,INDX,D,CODE)
!
! Given an N x N matrix A, this routine replaces it by the LU
! decomposition of a rowwise permutation of itself.
!
!
! Input parameters:
!
! * A : input matrix
! * N : dimensioning of matrix A
! * NP : physical dimension of matrix A
!
!
! Output parameters:
!
! * INDX : output vector recording the row permutation
! effected by the partial pivoting
! * D : = 1 number of row interchanges even
! = -1 number of row interchanges odd
! * CODE : return code (1 matrix is singular)
!
! This routine is used in combination with LUBKSB
! to solve linear equations or to invert a matrix.
!
!
! Last modified (DS) : 16 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO,ONE
!
IMPLICIT NONE
!
INTEGER, PARAMETER :: NMAX = 100
!
INTEGER, INTENT(IN) :: N,NP
INTEGER, INTENT(OUT) :: INDX(N),D,CODE
!
INTEGER :: AMAX,DUM,SUM
INTEGER :: VV(NMAX)
INTEGER :: I,J,K
INTEGER :: IMAX
!
REAL (WP), INTENT(OUT) :: A(NP,NP)
!
REAL (WP) :: ABS
!
REAL (WP), PARAMETER :: TINY = 1.0E-12_WP
!
D = 1 !
CODE = 0 !
DO I = 1, N !
AMAX = ZERO !
DO J = 1, N !
IF(ABS(A(I,J)) > AMAX) AMAX = ABS(A(I,J)) !
END DO !
IF(AMAX < TINY) THEN !
CODE = 1 !
RETURN !
END IF !
VV(I) = ONE / AMAX !
END DO !
!
DO J = 1, N !
DO I = 1, J - 1 !
SUM = A(I,J) !
DO K = 1, I-1 !
SUM = SUM - A(I,K) * A(K,J) !
END DO !
A(I,J) = SUM !
END DO !
AMAX = ZERO !
DO I = J, N !
SUM = A(I,J) !
DO K = 1,J - 1 !
SUM = SUM - A(I,K) * A(K,J) !
END DO !
A(I,J) = SUM !
DUM = VV(I) * ABS(SUM) !
IF(DUM >= AMAX) THEN !
IMAX = I !
AMAX = DUM !
END IF !
END DO !
!
IF(J /= IMAX) THEN !
DO K = 1, N !
DUM = A(IMAX,K) !
A(IMAX,K) = A(J,K) !
A(J,K) = DUM !
END DO !
D = - D !
VV(IMAX) = VV(J) !
END IF !
!
INDX(J) = IMAX !
IF(ABS(A(J,J)) < TINY) A(J,J) = TINY !
!
IF(J /= N) THEN !
DUM = ONE / A(J,J) !
DO I = J + 1, N !
A(I,J) = A(I,J) * DUM !
END DO !
END IF !
END DO !
!
END SUBROUTINE LUDCMP
!
!-----------------------------------------------------------------------
!
SUBROUTINE LUBKSB(A,N,NP,INDX,B)
!
! This subroutine solves the set of N linear equations A * X = B
!
!
! Input parameters:
!
! * A : input LU decomposition from routine LUDCMP
! * N : same as in routine LUDCMP
! * NP :
! * INDX : same as in routine LUDCMP
! * B : right-handside vector
!
!
! Output parameters:
!
! * B : solution vector X
!
!
! This routine is also efficient for plain matrix inversion.
!
!
! Last modified (DS) : 16 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: N,NP
INTEGER, INTENT(INOUT) :: INDX(N)
!
INTEGER :: I,II,J,LL
!
REAL (WP), INTENT(INOUT) :: A(NP,NP)
REAL (WP), INTENT(INOUT) :: B(N)
!
REAL (WP) :: SUM
!
II = 0 !
!
DO I = 1, N !
LL = INDX(I) !
SUM = B(LL) !
B(LL) = B(I) !
IF(II /= 0) THEN !
DO J = II, I-1 !
SUM = SUM - A(I,J) * B(J) !
END DO !
ELSE IF(SUM /= ZERO) THEN !
II = I !
END IF !
B(I) = SUM !
END DO !
!
DO I = N, 1, -1 !
SUM = B(I) !
IF(I < N) THEN !
DO J = I+1, N !
SUM = SUM - A(I,J) * B(J) !
END DO !
END IF !
B(I) = SUM / A(I,I) !
END DO !
!
END SUBROUTINE LUBKSB
!
END SUBROUTINE TSAVGOL
!
END MODULE SMOOTHING