MsSpec-DFM/New_libraries/DFM_library/UTILITIES_LIBRARY/factorials.f90

215 lines
7.6 KiB
Fortran
Raw Normal View History

2022-02-02 16:19:10 +01:00
!
!=======================================================================
!
MODULE FACTORIALS
!
! This module provides factorials and other related numbers
!
!
USE ACCURACY_REAL
USE REAL_NUMBERS, ONLY : ZERO,ONE
!
CONTAINS
!
!=======================================================================
!
FUNCTION FAC(N)
!
! This function computes the factorial of n
!
! Input parameters:
!
! * N : integer
!
! Output variables :
!
! * FAC : n!
!
!
! Author : D. Sébilleau
!
! Last modified : 5 Aug 2020
!
IMPLICIT NONE
!
REAL (WP) :: FAC
REAL (WP) :: FACT(50)
!
REAL (WP) :: FLOAT
!
INTEGER :: N,K
INTEGER :: LOGF
!
LOGF = 6 !
!
IF(N > 50) THEN !
WRITE(LOGF,10) !
STOP !
END IF !
!
FACT(1) = ONE !
!
DO K = 2, N !
FACT(K) =FACT(K-1) * FLOAT(K) !
END DO !
!
FAC = FACT(N) !
!
10 FORMAT(5X,'<<<<< DIMENSION ERROR IN FAC FUNCTION >>>>>',/, &!
5X,'<<<<< N SHOULD BE <= 50 OR REDIMENSION >>>>>',//) !
!
END FUNCTION FAC
!
!=======================================================================
!
SUBROUTINE COMBINATORIAL(NMAX,NUMBER,CN)
!
! This subroutine computes numbers resulting from combinatorics
!
! --> This version if for integers only <--
!
!
!
! Input variables :
!
! NMAX : upper value of n
! NUMBER : type of numbers computed
! ---> 'BINOMIAL ' : binomial coefficients
! ---> 'POCHHAMMER' : Pochhammer coefficients
! ---> 'STIRLING1S' : signed Stirling numbers of 1st kind
! ---> 'STIRLING1U' : unsigned Stirling numbers of 1st kind
! ---> 'STIRLING2N' : Stirling numbers of 2nd kind
!
! Output variables :
!
!
! CN : resulting numbers
!
!
! Author : D. Sébilleau
!
! Last modified : 31 Jan 2019
!
!
IMPLICIT NONE
!
REAL (WP) :: LG(NMAX),CN(0:NMAX,0:NMAX),X
!
REAL (WP) :: EXP,FLOAT
!
INTEGER :: NMAX,I,J,K,N
!
CHARACTER (LEN = 10) :: NUMBER
!
! Initialization of the array
!
DO I = 0,NMAX !
DO J = 0,NMAX !
CN(I,J) = ZERO !
END DO !
END DO !
!
IF(NUMBER == 'BINOMIAL ') THEN ! ( N )
! ! ( K )
CALL LOG_GAMMA(NMAX,LG) !
!
CN(0,0) = ONE !
DO N = 1,NMAX !
DO K = 1,NMAX-N !
X = LG(N)-LG(K)-LG(N-K) !
CN(N,K) = EXP(X) !
END DO !
END DO !
!
ELSE IF(NUMBER == 'POCHHAMMER') THEN ! (N)_K
!
CALL LOG_GAMMA(NMAX,LG) !
!
CN(0,0) = ONE !
DO N = 1,NMAX !
DO K = 1,NMAX-N !
X = LG(N+K)-LG(N) !
CN(N,K) = EXP(X) !
END DO !
END DO !
!
ELSE IF(NUMBER == 'STIRLING1U') THEN ! c(N,K)
!
CN(0,0) = ONE !
CN(NMAX,0) = ZERO !
!
DO N = 1, NMAX-1 !
CN(N,0) = ZERO !
DO K = 1, NMAX-N+1 !
CN(N+1,K) = FLOAT(N) * CN(N,K) + CN(N,K-1) !
END DO !
END DO !
!
ELSE IF(NUMBER == 'STIRLING1S') THEN ! s(N,K)
!
CN(0,0) = ONE !
CN(NMAX,0) = ZERO !
!
DO N = 1, NMAX-1 !
CN(N,0) = ZERO !
DO K = 1, NMAX-N+1 !
CN(N+1,K) = - FLOAT(N) * CN(N,K) + CN(N,K-1) !
END DO !
END DO !
!
ELSE IF(NUMBER == 'STIRLING2N') THEN ! S(N,K)
!
CN(0,0) = ONE !
CN(NMAX,0) = ZERO !
!
DO N = 1, NMAX-1 !
CN(N,0) = ZERO !
DO K = 1,NMAX-N+1 !
CN(N+1,K) = FLOAT(K) * CN(N,K) + CN(N,K-1) !
END DO !
END DO !
!
END IF
!
END SUBROUTINE COMBINATORIAL
!
!=======================================================================
!
SUBROUTINE LOG_GAMMA(NMAX,LG)
!
! This subroutine computes the logarithm of the Gamma function for
! integer values (i.e. Log(n!))
!
!
! Input variables :
!
! NMAX : upper value of n
!
! Output variables :
!
! LG : array containing Log(n!)
!
! Author : D. Sébilleau
!
! Last modified : 5 Aug 2020
!
!
IMPLICIT NONE
!
REAL (WP) :: LG(NMAX)
!
REAL (WP) :: LOG,FLOAT
!
INTEGER :: NMAX,I,J
!
LG(1) = ZERO !
!
DO I = 2,NMAX !
J = I - 1 !
LG(I) = LG(J) + LOG(FLOAT(J)) !
END DO !
!
END SUBROUTINE LOG_GAMMA
!
END MODULE FACTORIALS