MsSpec-DFM/New_libraries/DFM_library/THERMAL_PROPERTIES_LIBRARY/chemical_potential.f90

298 lines
11 KiB
Fortran
Raw Normal View History

2022-02-02 16:19:10 +01:00
!
!=======================================================================
!
MODULE CHEMICAL_POTENTIAL
!
USE ACCURACY_REAL
!
CONTAINS
!
!
!=======================================================================
!
FUNCTION MU_RS(RS,EC_TYPE)
!
! This function computes the chemical potential as a function of r_s
! for a 3D system
!
! References: (1) G. E. Simion and G. F. Giuliani, Phys. Rev. B 77,
! 035131 (2008)
!
! Input parameters:
!
! * RS : Wigner-Seitz radius (in units of a_0)
! * EC_TYPE : type of correlation energy functional
!
! Output parameters:
!
! * MU_RS : chemical potential in SI
!
!
! Warning : all correlation energies are given in Ryd
!
!
!
! Author : D. Sébilleau
!
! Last modified : 2 Nov 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO,HALF,THIRD
USE CONSTANTS_P1, ONLY : BOHR,E
USE PI_ETC, ONLY : PI_INV
USE UTILITIES_1, ONLY : ALFA
USE CORRELATION_ENERGIES, ONLY : EC_3D,DERIVE_EC_3D
USE ENE_CHANGE, ONLY : EV,RYD
!
IMPLICIT NONE
!
CHARACTER (LEN = 6) :: EC_TYPE
!
REAL (WP), INTENT(IN) :: RS
REAL (WP) :: MU_RS
REAL (WP) :: ALPHA,COEF,K
REAL (WP) :: EC,D_EC_1,D_EC_2
!
ALPHA = ALFA('3D') !
COEF = E * E / (BOHR * RS) ! e^2 /(a_0 * r_s)
K = EV * RYD ! conversion Ryd --> SI
!
! Computing the correlation energy derivatives
!
CALL DERIVE_EC_3D(EC_TYPE,1,5,RS,ZERO,D_EC_1,D_EC_2) !
!
MU_RS = HALF * COEF / (RS * ALPHA * ALPHA) - & !
PI_INV * COEF / ALPHA + & ! ref. (1) eq. (50)
EC_3D(EC_TYPE,1,RS,ZERO) * K - & !
THIRD * RS * D_EC_1 * K !
!
END FUNCTION MU_RS
!
!=======================================================================
!
FUNCTION MU(DMN,T)
!
! This function computes the chemical potential as a function of T,
! for small values of T
!
! References: (1) M. Selmke, https://photonicsdesign.jimdo.com/app/
! download/5512592980/SommerfeldExpansion.pdf?t=1418743530
! (2) E. Cetina, F. Magana and A. A. Valladares,
! Am. J. Phys. 45, 960-963 (1977)
!
! Input parameters:
!
! * DMN : dimension
! * T : temperature (SI)
!
!
! Author : D. Sébilleau
!
! Last modified : 2 Nov 2020
!
!
USE REAL_NUMBERS, ONLY : ONE
USE CONSTANTS_P1, ONLY : K_B
USE FERMI_SI, ONLY : EF_SI
USE PI_ETC, ONLY : PI2
!
IMPLICIT NONE
!
CHARACTER (LEN = 2) :: DMN
!
REAL (WP), INTENT(IN) :: T
REAL (WP) :: MU
REAL (WP) :: BETA,THETA,THETA2,THETA4
REAL (WP) :: PI4
!
REAL (WP) :: LOG,EXP
!
BETA = ONE / (K_B * T) !
THETA = ONE / (BETA * EF_SI) ! k_B T / E_F
THETA2 = THETA * THETA !
THETA4 = THETA2 * THETA2 !
!
PI4 = PI2 * PI2 !
!
IF(DMN == '3D') THEN !
!
MU = EF_SI * (ONE - PI2 * THETA2 / 12.0E0_WP - & ! ref. 1 eq. (29)
PI4 * THETA4 / 80.0E0_WP) !
!
ELSE IF(DMN == '2D') THEN !
!
MU = EF_SI * (ONE + THETA * LOG(ONE - EXP(- ONE / THETA))) ! ref. 2 eq. (13)
!
ELSE IF(DMN == '1D') THEN !
!
MU = EF_SI * (ONE + PI2 * THETA2 / 12.0E0_WP) !
!
END IF !
!
END FUNCTION MU
!
!=======================================================================
!
FUNCTION MU_T(DMN,T)
!
! This function computes the chemical potential as a function of T
! for any value if T
!
! References: (1) N.G. Nilsson, Phys. Stat. Sol. (a) 19, K75-K78 (1973)
!
!
! Note : we use here Nilsson' approximation for eta = mu / (k_B T), as in 3D,
!
! 2/3 D^{3/2) = F_{1/2}(eta) <-- Fermi-Dirac integral
!
!
! Input parameters:
!
! * DMN : dimension
! * T : temperature (SI)
!
!
! Author : D. Sébilleau
!
! Last modified : 3 Nov 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO,ONE,TWO,THREE,HALF,THIRD,FOURTH
USE CONSTANTS_P1, ONLY : K_B
USE FERMI_SI, ONLY : EF_SI
USE PI_ETC, ONLY : PI2,SQR_PI
!
USE SPECIFIC_INT_7, ONLY : FD
!
USE OUT_VALUES_10, ONLY : I_WR
!
IMPLICIT NONE
!
CHARACTER (LEN = 2) :: DMN
!
INTEGER :: NN,I,NE
INTEGER :: LOGF
!
REAL (WP), INTENT(IN) :: T
REAL (WP) :: MU_T
REAL (WP) :: ETA,TH
REAL (WP) :: KBT
REAL (WP) :: U,V,W,FF,FDF
REAL (WP) :: FDF1,FDF2,FDF3,FDF4,FDF5
REAL (WP) :: ETA1,ETA2,ETA3,ETA4,ETA5
REAL (WP) :: GF
REAL (WP) :: D
REAL (WP) :: DD,ET_STEP,ET,ET_M,ET_AV
!
REAL (WP) :: FLOAT,LOG,SQRT,ABS
!
LOGF = 6 !
!
GF = HALF * SQR_PI ! Gamma(3/2)
!
KBT = K_B * T !
TH = KBT / EF_SI !
!
! Calculating eta
!
IF(DMN == '3D') THEN !
!
D = ONE / TH ! E_F / k_B T
U = TWO * THIRD * (D**1.5E0_WP) / GF !
W = THREE * SQR_PI * U * FOURTH !
V = W**(TWO * THIRD) !
!
! Computing Nilsson's approximations to eta
!
!
ETA1 = LOG(U) !
FDF1 = FD(ETA1,0.5D0) !
!
IF(U < 3.703704D0) THEN !
ETA2 = LOG( U / (1.0D0 - 0.27D0 * U) ) !
FDF2 = FD(ETA2,0.5D0) !
END IF !
!
IF(V * V > PI2 / 6.0D0) THEN !
ETA3 = SQRT( V * V - PI2 / 6.0D0 ) !
FDF3 = FD(ETA3,0.5D0) !
END IF !
!
IF(U /= 1.0D0) THEN !
ETA4 = LOG(U) / (1.0D0 - U) + V + 2.0D0 * V / & !
(3.0D0 + V)**2 !
FDF4 = FD(ETA4,0.5D0) !
END IF !
!
IF(U /= 1.0D0) THEN !
ETA5 = LOG(U) / (1.0D0 - U * U) + V - & !
V / (0.24D0 + 1.08D0 * V)**2 !
FDF5 = FD(ETA5,0.5D0) !
END IF !
!
FF = 2.0D0 * THIRD * D**1.5D0
!
IF(U == 1.0D0) THEN !
ET_AV = ETA3 !
DD = U !
ELSE !
ET_AV = ETA4 !
DD = ABS(ETA5 - ETA4) / ABS(ETA5) !
END IF !
!
IF(DD > 0.001D0) THEN !
!
ET_M = DD * 5.0D0 !
ET_STEP = 2.0D0 * ET_M / FLOAT(NE - 1) !
!
DO I = 1, NE !
ET = ET_AV - ET_M + FLOAT(I - 1) * ET_STEP !
FDF = FD(ET,0.5D0) !
IF(ABS((FDF - FF)/FF) < 0.001D0) GO TO 5 !
END DO !
5 ETA = ET !
ELSE !
ETA = ETA5 !
FDF = FDF5 !
END IF !
!
ELSE IF(DMN == '2D') THEN !
!
ETA = LOG(EXP(- TH) - ONE) !
!
ELSE IF(DMN == '1D') THEN !
!
CONTINUE ! not implemented yet
!
END IF !
!
IF(I_WR == 1) THEN !
WRITE(LOGF,10) ETA1,FDF1,FF !
WRITE(LOGF,20) ETA2,FDF2,FF !
WRITE(LOGF,30) ETA3,FDF3,FF !
WRITE(LOGF,40) ETA4,FDF4,FF !
WRITE(LOGF,50) ETA5,FDF5,FF !
WRITE(LOGF,60) ETA ,FDF ,FF !
END IF !
!
MU_T = ETA * KBT !
!
! Formats:
!
10 FORMAT(//,5X,'eta_1 = ',F12.6,' F_{1/2} approx. = ',F12.6, &
' F_{1/2} exact. = ',F12.6)
20 FORMAT(//,5X,'eta_2 = ',F12.6,' F_{1/2} approx. = ',F12.6, &
' F_{1/2} exact. = ',F12.6)
30 FORMAT(//,5X,'eta_3 = ',F12.6,' F_{1/2} approx. = ',F12.6, &
' F_{1/2} exact. = ',F12.6)
40 FORMAT(//,5X,'eta_4 = ',F12.6,' F_{1/2} approx. = ',F12.6, &
' F_{1/2} exact. = ',F12.6)
50 FORMAT(//,5X,'eta_5 = ',F12.6,' F_{1/2} approx. = ',F12.6, &
' F_{1/2} exact. = ',F12.6)
60 FORMAT(//,5X,'eta = ',F12.6,' F_{1/2} approx. = ',F12.6, &
' F_{1/2} exact. = ',F12.6)
!
END FUNCTION MU_T
!
END MODULE CHEMICAL_POTENTIAL