MsSpec-DFM/New_libraries/DFM_library/DAMPING_LIBRARY/relaxation_time_static.f90

2722 lines
95 KiB
Fortran
Raw Normal View History

2022-02-02 16:19:10 +01:00
!
!=======================================================================
!
MODULE RELAXATION_TIME_STATIC
!
USE ACCURACY_REAL
!
CONTAINS
!
!=======================================================================
!
SUBROUTINE RELAXATION_TIME(X,TAU)
!
! This subroutine computes the rélaxation time
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Dec 2020
!
!
USE MATERIAL_PROP, ONLY : DMN,RS,MSOM,EPS_B
USE EXT_FIELDS, ONLY : T
USE MULTILAYER, ONLY : DL,H_TYPE
USE LF_VALUES, ONLY : GQ_TYPE
USE SF_VALUES, ONLY : SQ_TYPE
USE DAMPING_VALUES
!
USE EL_ELE_INTER
USE EL_PHO_INTER
USE EL_IMP_INTER
!
USE REAL_NUMBERS, ONLY : ZERO,ONE,INF
USE CONSTANTS_P1, ONLY : M_E
USE ENE_CHANGE, ONLY : EV
!
IMPLICIT NONE
!
INTEGER :: I_ET
INTEGER :: I_E,I_P,I_I
!
REAL (WP), INTENT(IN) :: X
REAL (WP), INTENT(OUT):: TAU
!
REAL (WP) :: EK_SI
REAL (WP) :: TAU_EE,TAU_EP,TAU_EI
REAL (WP) :: INV_EE,INV_EP,INV_EI
REAL (WP) :: SUM_INV
REAL (WP) :: MASS_E,LR
REAL (WP) :: TEI,TAU_E,S_L
!
! Kinetic energy of the electrin in SI
!
EK_SI = EK * EV !
!
MASS_E = MSOM * M_E ! effective mass of electron
LR = ZERO ! residual mfp (temporary)
TEI = ZERO ! e-imp collision time (temporary)
TAU_E = ZERO ! elastic scattering time (temporary)
S_L = ZERO ! scattering length (temporary)
!
I_E = 0 ! e-e calculation switch
I_P = 0 ! e-p calculation switch
I_I = 0 ! e-i calculation switch
!
! Relaxation time initialization
!
IF(RT_TYPE == ' NO') THEN !
INV_EE = ZERO !
INV_EP = ZERO !
INV_EI = ZERO !
GO TO 10 !
ELSE IF(RT_TYPE == 'E-E') THEN !
INV_EP = ZERO !
INV_EI = ZERO !
I_E = 1 !
ELSE IF(RT_TYPE == 'E-P') THEN !
INV_EE = ZERO !
INV_EI = ZERO !
I_P = 1 !
ELSE IF(RT_TYPE == 'E-I') THEN !
INV_EE = ZERO !
INV_EP = ZERO !
I_I = 1 !
ELSE IF(RT_TYPE == 'ALL') THEN !
I_E = 1 !
I_P = 1 !
I_I = 1 !
END IF !
!
! Computation of the electron-electron inverse relaxation time
!
IF(EE_TYPE /= 'NONE' .AND. I_E == 1) THEN !
IF(DMN == '3D') THEN !
CALL EE_RT_3D(EE_TYPE,SQ_TYPE,GQ_TYPE,X,RS,T, & !
EK_SI,EI_C,TAU_EE) !
ELSE IF(DMN == '2D') THEN !
I_ET = 2 ! temporary
CALL EE_RT_2D(EE_TYPE,RS,T,EK_SI,TAU_E,EPS_B,EI_C,DL, & !
I_ET,H_TYPE,TEI,TAU_EE) !
ELSE IF(DMN == '1D') THEN !
CALL EE_RT_1D(EE_TYPE,EK_SI,TEI,TAU_EE) !
END IF !
INV_EE = ONE / TAU_EE !
END IF !
!
! Computation of the electron-phonon inverse relaxation time
!
IF(EP_TYPE /= 'NONE' .AND. I_P == 1) THEN !
IF(DMN == '3D') THEN !
CALL EP_RT_3D(EP_TYPE,T,NA,MA,RA,DEBYE_T,EP_C,EK_SI, & !
RS,TAU_EP) !
ELSE IF(DMN == '2D') THEN !
INV_EP = ZERO ! not yet implemented
ELSE IF(DMN == '1D') THEN !
INV_EP = ZERO ! not yet implemented
END IF !
INV_EP = ONE / TAU_EP !
END IF !
!
! Computation of the electron-impurity inverse relaxation time
!
IF(EI_TYPE /= 'NONE' .AND. I_I == 1) THEN !
IF(DMN == '3D') THEN !
CALL EI_RT_3D(EI_TYPE,EK_SI,T,RS,NI,EPS_B,MASS_E,TAU_EI) !
ELSE IF(DMN == '2D') THEN !
INV_EI = ZERO ! not yet implemented
ELSE IF(DMN == '1D') THEN !
INV_EI = ZERO ! not yet implemented
END IF !
INV_EI = ONE / TAU_EI !
END IF !
!
10 SUM_INV = INV_EE + INV_EP + INV_EI !
IF(SUM_INV /= ZERO) THEN !
TAU = ONE / SUM_INV !
ELSE !
TAU = INF !
END IF !
!
END SUBROUTINE RELAXATION_TIME
!
! Specific cases:
!
!------ 1) electron-phonon case --------------------------------------------
!
!=======================================================================
!
SUBROUTINE EP_RT_3D(EP_TYPE,T,NA,MA,RA,TH,CA,EE,RS,TAU)
!
! This subroutine computes the electron-phonon relaxation time
! in 3D systems
!
!
! Input parameters:
!
! * EP_TYPE : relaxation time functional for electron-phonon
! EP_TYPE = 'STEH' --> Steinberg high-T approximation
! EP_TYPE = 'STEL' --> Steinberg low-T approximation
! * T : temperature (in SI)
! * MA : mass of lattice atoms
! * RA : radius of atoms
! * TH : Debye temperature of the material in SI
! * CA : electron-phonon coupling
! * EE : energy of electron in SI
! * RS : Wigner-Seitz radius (in units of a_0)
!
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
IMPLICIT NONE
!
CHARACTER (LEN = 4) :: EP_TYPE
!
REAL (WP) :: T,NA,MA,RA,TH,CA,EE,RS
REAL (WP) :: TAU
!
IF(EP_TYPE == 'STEH') THEN !
TAU = STEH_RT_3D(T,MA,RA,TH,CA,EE,RS) !
ELSE IF(EP_TYPE == 'STEL') THEN !
TAU = STEL_RT_3D(T,MA,RA,TH,CA,RS) !
END IF !
!
END SUBROUTINE EP_RT_3D
!
!=======================================================================
!
FUNCTION STEH_RT_3D(T,MA,RA,TH,CA,EE,RS)
!
! This function computes Steinberg's high-temperature relaxation time.
!
! In this model; the electron interacts with acoustic lattice vibrations
!
!
! Reference: (1) M. S. Steinberg, Phys. Rev. 109, 1486 (1958)
!
! Input parameters:
!
! * T : temperature (in SI)
! * MA : mass of lattice atoms
! * RA : radius of atoms
! * TH : Debye temperature of the material in SI
! * CA : electron-phonon coupling
! * EE : energy of electron in SI
! * RS : Wigner-Seitz radius (in units of a_0)
!
! Output parameters:
!
! * STEH_RT_3D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 9 Oct 2020
!
!
USE REAL_NUMBERS, ONLY : TWO,THREE,FOUR,SIX,HALF,THIRD
USE CONSTANTS_P1, ONLY : H_BAR,M_E,K_B
USE PI_ETC, ONLY : PI,PI2
!
IMPLICIT NONE
!
REAL (WP) :: T,NA,MA,RA,TH,CA,EE,RS
REAL (WP) :: STEH_RT_3D
REAL (WP) :: N0
REAL (WP) :: H,AL,GA,D
REAL (WP) :: NUM,DEN1,DEN2
!
REAL (WP) :: SQRT
!
AL = (FOUR * PI * THIRD)**THIRD ! (4 pi / 4)^{1/3}
!
H = TWO * PI * H_BAR ! h = 2 pi * h_bar
!
GA = AL * (FOUR * MA * RA * K_B * TH) / & !
(THREE * H * H * CA * CA) ! /\
!
D = (SIX * PI2)**(TWO * THIRD) * H_BAR * H_BAR / & ! D
(FOUR * M_E * RA * RA) !
!
NUM = TWO * H_BAR * H_BAR * GA * TH * EE**1.5E0_WP !
DEN1 = D * SQRT(HALF * M_E) * T !
DEN2 = THREE - D / EE !
!
STEH_RT_3D = NUM / (DEN1 * DEN2) ! ref. 1 eq. (4.2)
!
END FUNCTION STEH_RT_3D
!
!=======================================================================
!
FUNCTION STEL_RT_3D(T,MA,RA,TH,CA,RS)
!
! This function computes Steinberg's low-temperature relaxation time.
!
! In this model; the electron interacts with acoustic lattice vibrations
!
!
! Reference: (1) M. S. Steinberg, Phys. Rev. 109, 1486 (1958)
!
! Input parameters:
!
! * T : temperature (in SI)
! * MA : mass of lattice atoms
! * RA : radius of atoms
! * TH : Debye temperature of the material in SI
! * CA : electron-phonon coupling
! * RS : Wigner-Seitz radius (in units of a_0)
!
! Output parameters:
!
! * STEL_RT_3D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,THREE,FOUR,SIX,THIRD,LARGE
USE CONSTANTS_P1, ONLY : H_BAR,M_E,K_B
USE FERMI_SI, ONLY : EF_SI
USE PI_ETC, ONLY : PI,PI2
USE SPECIFIC_INT_1, ONLY : STEI_INT
!
IMPLICIT NONE
!
REAL (WP) :: T,NA,MA,RA,TH,CA,RS
REAL (WP) :: STEL_RT_3D
REAL (WP) :: H,AL,GA,D,EF3,M3
REAL (WP) :: NUM,DEN1,DEN2
REAL (WP) :: X,J5,J7,X5
!
REAL (WP) :: SQRT
!
AL = (FOUR * PI * THIRD)**THIRD ! (4 pi / 4)^{1/3}
!
H = TWO * PI * H_BAR ! h = 2 pi * h_bar
!
GA = AL * (FOUR * MA * RA * K_B * TH) / & !
(THREE * H * H * CA * CA) ! /\
!
D = (SIX * PI2)**(TWO * THIRD) * H_BAR * H_BAR / & ! D
(FOUR * M_E * RA * RA) !
!
EF3 = EF_SI * EF_SI * EF_SI !
M3 = M_E * M_E * M_E !
!
! Computation of the J_p(x) functions
!
X = TH/T !
X5 = X * X * X * X * X !
!
NUM = H_BAR * H_BAR * GA * SQRT(EF3) * X5 !
DEN1 = THREE * SQRT(TWO * M3) * D !
!
! Computation of the J_p(x) functions
!
IF(T > ONE) THEN !
!
J5 = STEI_INT(X,5) !
J7 = STEI_INT(X,7) !
!
DEN2 = J5 - J7 / ( X*X / (TWO * EF_SI) ) !
!
ELSE !
!
J5 = STEI_INT(LARGE,5) !
!
DEN2 = J5 !
!
END IF !
!
STEL_RT_3D = NUM / (DEN1 * DEN2) ! ref. 1 eq. (4.9)
! ! ref. 1 eq. (4.10)
END FUNCTION STEL_RT_3D
!
!------ 2) electron-electron case --------------------------------------------
!
!
!=======================================================================
!
SUBROUTINE EE_RT_3D(EE_TYPE,SQ_TYPE,GQ_TYPE,X,RS,T, &
EK,U,TAU)
!
! This subroutine computes the electron-electron relaxation time
! in 3D systems
!
!
! Input parameters:
!
! * EE_TYPE : relaxation time functional for electron-phonon
! EE_TYPE = 'ALAR' --> Al'tshuler-Aronov approximation
! EE_TYPE = 'ALA2' --> Al'tshuler-Aronov approximation
! EE_TYPE = 'BACA' --> Barriga-Carrasco approximation
! EE_TYPE = 'FSTB' --> Fann et al approximation
! EE_TYPE = 'PIN1' --> Pines-Nozières 1st approximation
! EE_TYPE = 'PIN2' --> Pines-Nozières 2nd approximation
! EE_TYPE = 'QIV2' --> Qian-Vignale high-density limit
! EE_TYPE = 'QIVI' --> Qian-Vignale approximation
! EE_TYPE = 'RASM' --> Rammer-Smith approximation
! EE_TYPE = 'TAI0' --> Tanaka-Ichimaru approximation (q = 0)
! EE_TYPE = 'TAIQ' --> q-dependent Tanaka-Ichimaru approximation
! EE_TYPE = 'UTIC' --> Utsumi-Ichimaru approximation
! * SQ_TYPE : structure factor approximation (3D)
! * GQ_TYPE : local-field correction type (3D)
! * EC_TYPE : type of correlation energy functional (3D)
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : temperature (SI)
! * EK : electron kinetic energy (SI)
! * U : strength of impurity scattering
!
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Dec 2020
!
IMPLICIT NONE
!
CHARACTER (LEN = 4) :: EE_TYPE,GQ_TYPE
CHARACTER (LEN = 3) :: SQ_TYPE
!
REAL (WP) :: X,RS,T,EK,U,DC
REAL (WP) :: TAU
!
IF(EE_TYPE == 'ALAR') THEN !
TAU = ALAR_RT_3D(X,EK) !
ELSE IF(EE_TYPE == 'ALA2') THEN !
TAU = ALAR_RT_ND('3D',X,EK) !
ELSE IF(EE_TYPE == 'BACA') THEN !
TAU = BACA_RT_3D(RS,T) !
ELSE IF(EE_TYPE == 'FSTB') THEN !
TAU = FSTB_RT_3D(RS) !
ELSE IF(EE_TYPE == 'PIN1') THEN !
TAU = PIN1_RT_3D(EK,T) !
ELSE IF(EE_TYPE == 'PIN2') THEN !
TAU = PIN2_RT_3D(EK,T) !
ELSE IF(EE_TYPE == 'QIV2') THEN !
TAU = QIV2_RT_3D(EK,X,T) !
ELSE IF(EE_TYPE == 'QIVI') THEN !
TAU = QIVI_RT_3D(EK,X,T) !
ELSE IF(EE_TYPE == 'RASM') THEN !
TAU = RASM_RT_3D(EK,T,RS,U) !
ELSE IF(EE_TYPE == 'TAI0') THEN !
TAU = TAI0_RT_3D(RS,T) !
ELSE IF(EE_TYPE == 'TAIQ') THEN !
TAU = TAIQ_RT_3D(X,RS,T) !
ELSE IF(EE_TYPE == 'UTIC') THEN !
TAU = UTIC_RT_3D(X,RS,T,SQ_TYPE,GQ_TYPE) !
END IF !
!
END SUBROUTINE EE_RT_3D
!
!=======================================================================
!
FUNCTION ALAR_RT_3D(X,EK)
!
! This function computes Al'tshuler-Aronov approximation for
! the relaxation time in the presence of impurities for 3D systems
!
! Reference: (1) B. L. Al'tshuler and A. G. Aronov, JETP Lett. 30,
! 482-484 (1979)
!
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * EK : electron kinetic energy (SI)
!
! Output parameters:
!
! * ALAR_RT_3D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 30 Apr 2021
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,THREE,HALF,THIRD
USE CONSTANTS_P1, ONLY : H_BAR
USE FERMI_SI, ONLY : KF_SI,EF_SI,VF_SI
USE PI_ETC, ONLY : PI2,PI3
USE SQUARE_ROOTS, ONLY : SQR2
USE SCREENING_VEC, ONLY : THOMAS_FERMI_VECTOR
USE DAMPING_VALUES, ONLY : DC_TYPE,D_VALUE_1,POWER_1
USE DIFFUSION_COEFFICIENT
USE EXTERNAL_DAMPING
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: X,EK
REAL (WP) :: ALAR_RT_3D
!
REAL (WP) :: ZK
REAL (WP) :: D,L,TAU
REAL (WP) :: POW
REAL (WP) :: Q,NU0
REAL (WP) :: KS
REAL (WP) :: NUM,DEN,XXX
!
REAL (WP) :: SQRT
!
ZK = EK - EF_SI ! xi_p in SI
!
! Computing the diffusion coefficient
!
IF(DC_TYPE == 'EXTE') THEN !
CALL CALC_POWER(POWER_1,POW) !
D = D_VALUE_1 * POW !
ELSE !
CALL DIFFUSION_COEF(D) !
END IF !
!
L = THREE * D / VF_SI ! mean free path in SI
TAU = L / VF_SI !
Q = X * TWO * KF_SI ! q in SI
!
NU0 = HALF * KF_SI * KF_SI * KF_SI / (PI2 * EF_SI) ! DoS at Fermi level
!
! Computing the Thomas-Fermi screening vector
!
CALL THOMAS_FERMI_VECTOR('3D',KS) !
!
IF( (Q < ONE / L) .AND. (KS * L > ONE) ) THEN !
!
NUM = ZK**1.5E0_WP !
DEN = 12.0E0_WP * SQR2 * PI3 * H_BAR * NU0 * & !
(H_BAR * D)**1.5E0_WP !
!
XXX = NUM / DEN ! ref. 1 eq. (8)
!
ELSE !
!
NUM = PI2 * KS * ZK * ZK !
DEN = 64.0E0_WP * H_BAR * KF_SI * EF_SI !
!
XXX = NUM / DEN ! ref. 1 eq. (8)
!
END IF !
!
ALAR_RT_3D = ONE / XXX ! ref. 1 eq. (8)
!
END FUNCTION ALAR_RT_3D
!
!=======================================================================
!
FUNCTION ALAR_RT_ND(DMN,X,EK)
!
! This function computes Al'tshuler-Aronov approximation for
! the relaxation time in the presence of impurities
!
! Reference: (1) B. L. Al'tshuler and A. G. Aronov, in
! "Electron-Electron Interactions in Disordered
! Solids", A. L. Efros and M. Pollak eds.
! (North-Holland,1985)
!
!
! Input parameters:
!
! * DMN : system dimension
! * X : dimensionless factor --> X = q / (2 * k_F)
! * EK : electron kinetic energy (SI)
!
! Output parameters:
!
! * ALAR_RT_ND : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 30 Apr 2021
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,THREE,FOUR,HALF,FOURTH
USE CONSTANTS_P1, ONLY : H_BAR
USE FERMI_SI, ONLY : KF_SI,EF_SI
USE PI_ETC, ONLY : PI,PI_INV
USE SCREENING_VEC, ONLY : THOMAS_FERMI_VECTOR
USE UTILITIES_1, ONLY : D,DOS_EF
USE DAMPING_VALUES, ONLY : DC_TYPE,D_VALUE_1,POWER_1
USE DIFFUSION_COEFFICIENT
USE EXTERNAL_DAMPING
!
IMPLICIT NONE
!
CHARACTER (LEN = 2) :: DMN
!
REAL (WP), INTENT(IN) :: X,EK
REAL (WP) :: ALAR_RT_ND
!
REAL (WP) :: ZK
REAL (WP) :: DC,POW,KS
REAL (WP) :: NF,DI,DD
REAL (WP) :: XX,DS,F,OD
REAL (WP) :: K1,K2,NUM,DEN,XXX
!
REAL (WP) :: SQRT,LOG,SIN
!
ZK = EK - EF_SI ! xi_p in SI
!
! Computing the diffusion coefficient
!
IF(DC_TYPE == 'EXTE') THEN !
CALL CALC_POWER(POWER_1,POW) !
DC = D_VALUE_1 * POW !
ELSE !
CALL DIFFUSION_COEF(DC) !
END IF !
!
! Computing the Thomas-Fermi screening vector
!
CALL THOMAS_FERMI_VECTOR(DMN,KS) !
!
! Computing the density of state at Fermi level
!
NF = DOS_EF(DMN) !
!
DI = D(DMN) !
DD = HALF * DI !
!
XX = TWO * KF_SI / KS !
!
IF(DMN == '2D') THEN !
DS = SQRT(XX * XX - ONE) !
F = PI_INV * LOG((XX + DS)/(XX - DS)) / DS ! ref. 1 eq. (3.36a)
ELSE !
F= TWO * LOG(ONE + XX * XX)/(XX * XX) ! ref. 1 eq. (3.36b)
END IF !
!
IF(DMN == '3D') THEN !
OD = FOURTH * PI_INV * PI_INV !
ELSE IF(DMN == '2D') THEN !
OD = HALF * PI_INV !
ELSE IF(DMN == '1D') THEN !
OD = PI_INV !
END IF !
!
K1 = ONE - THREE * F * ( ONE - (ONE + HALF * F)**DD ) & !
/ (FOUR + F) !
K2 = OD / ( TWO * DI ** SIN(FOURTH * PI * DI) ) !
!
NUM = ZK**DD !
DEN = H_BAR * NF * (H_BAR * DC)**DD !
!
XXX = K1 * K2 * NUM / DEN ! ref. 1 eq. (4.4)
!
ALAR_RT_ND = ONE / XXX ! ref. 1 eq. (4.4)
!
END FUNCTION ALAR_RT_ND
!
!=======================================================================
!
FUNCTION BACA_RT_3D(RS,T)
!
! This function computes Barriga-Carrasco approximation for
! the relaxation time in the 3D case
!
! References: (1) M. D. Barriga-Carrasco, Phys. Rev. E 76, 016405 (2007)
!
!
! Input parameters:
!
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : temperature (in SI)
!
! Output parameters:
!
! * BACA_RT_3D : relaxation time in seconds
!
! Note: result given in a.u. in ref. (1) eq. (17) --> h nu in Hartree
!
! --> h nu * Hartree in J
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,NINE
USE PI_ETC, ONLY : PI,SQR_PI
USE CONSTANTS_P2, ONLY : HARTREE
USE CONSTANTS_P3, ONLY : PLANCK
USE SQUARE_ROOTS, ONLY : SQR2
USE UTILITIES_1, ONLY : RS_TO_N0
USE PLASMON_SCALE_P, ONLY : NONID
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: RS,T
REAL (WP) :: BACA_RT_3D
!
REAL (WP) :: N0
REAL (WP) :: CL,NU
!
REAL (WP) :: SQRT,LOG
!
N0 = RS_TO_N0('3D',RS) !
!
CL = LOG(SQRT(N0)) / NONID**(1.5E0_WP) ! Coulomb logarithm
!
NU = 16.0E0_WP * SQR2 * (NONID**(1.5E0_WP)) * CL / & ! ref. 1 eq. (17)
(NINE * PI * SQR_PI) ! in a.u.
!
BACA_RT_3D = ONE / (NU * HARTREE / PLANCK) ! in SI
!
END FUNCTION BACA_RT_3D
!
!=======================================================================
!
FUNCTION FSTB_RT_3D(RS)
!
! This function computes Fann et al approximation for
! the relaxation time in the 3D case
!
! References: (1) W. S. Fann et al, Phys. Rev. B 46, 13592-13595 (1992)
!
!
! Input parameters:
!
! * RS : Wigner-Seitz radius (in units of a_0)
!
! Output parameters:
!
! * FSTB_RT : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE CONSTANTS_P1, ONLY : H_BAR
USE PI_ETC, ONLY : PI2
USE SQUARE_ROOTS, ONLY : SQR3
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: RS
REAL (WP) :: FSTB_RT_3D
!
FSTB_RT_3D = 128.0E0_WP * H_BAR / (PI2 * SQR3 * ENE_P_SI) ! ref. (1) eq. (2)
!
END FUNCTION FSTB_RT_3D
!
!=======================================================================
!
FUNCTION PIN1_RT_3D(EK,T)
!
! This function computes Pines-Nozières approximation for
! the relaxation time in the 3D case
!
! Reference: (1) D. Pines and P. Nozi\`{e}res,
! "The Theory of Quantum Liquids -- Normal Fermi Liquids",
! (Benjamin, 1966)
!
!
! Input parameters:
!
! * EK : electron kinetic energy (SI)
! * T : temperature (SI)
!
! Output parameters:
!
! * PIN1_RT_3D : relaxation time in seconds
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,HALF
USE PI_ETC, ONLY : PI2
USE CONSTANTS_P1, ONLY : H_BAR
USE FERMI_SI, ONLY : KF_SI
USE SQUARE_ROOTS, ONLY : SQR3
USE PLASMON_ENE_SI
USE CHEMICAL_POTENTIAL, ONLY : MU
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: EK,T
REAL (WP) :: PIN1_RT_3D
!
REAL (WP) :: MM,ZK
REAL (WP) :: OMP
REAL (WP) :: XXX
!
OMP = ENE_P_SI / H_BAR ! omega_p
!
! Computing the chemical potential
!
MM = MU('3D',T) ! chemical potential is SI
!
ZK = EK - MM ! xi_p in SI
!
XXX = PI2 * SQR3 * OMP * (ZK / MM)**2 / 128.0E0_WP !
!
PIN1_RT_3D = ONE / XXX ! ref. (1) eq. (5.134c)
!
END FUNCTION PIN1_RT_3D
!
!=======================================================================
!
FUNCTION PIN2_RT_3D(EK,T)
!
! This function computes Pines-Nozières approximation for
! the relaxation time in the 3D case
!
! Reference: (1) D. Pines and P. Nozi\`{e}res,
! "The Theory of Quantum Liquids -- Normal Fermi Liquids",
! (Benjamin, 1966)
!
!
! Input parameters:
!
! * EK : electron kinetic energy (SI)
! * T : temperature (SI)
!
! Output parameters:
!
! * PIN2_RT_3D : relaxation time in seconds
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,HALF
USE PI_ETC, ONLY : PI_INV
USE CONSTANTS_P1, ONLY : BOHR,H_BAR,E,M_E
USE FERMI_SI, ONLY : KF_SI,VF_SI
USE CHEMICAL_POTENTIAL, ONLY : MU
USE SPECIFIC_INT_10
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: EK,T
REAL (WP) :: PIN2_RT_3D
!
REAL (WP) :: MM,ZK,K
REAL (WP) :: NUM,DEN,KOEF
REAL (WP) :: INTG
REAL (WP) :: XXX
!
REAL (WP) :: SQRT
!
! Computing the chemical potential
!
MM = MU('3D',T) ! chemical potential is SI
!
ZK = EK - MM ! xi_p in SI
K = SQRT(TWO * M_E * EK) / H_BAR ! k in SI
!
NUM = TWO * PI_INV * E * E * KF_SI * ZK * ZK !
DEN = H_BAR * H_BAR * H_BAR * BOHR * VF_SI * VF_SI !
KOEF = NUM / DEN !
!
! Computing the integral
!
CALL INT_PINO(INTG) !
!
XXX = KOEF * INTG !
!
PIN2_RT_3D = ONE / XXX ! ref. (1) eq. (5.134b)
!
END FUNCTION PIN2_RT_3D
!
!=======================================================================
!
FUNCTION QIVI_RT_3D(EK,X,T)
!
! This function computes Qian-Vignale approximation for
! the relaxation time in the 3D case
!
! Reference: (1) Z. Qian and G. Vignale,
! Phys. Rev. B 71, 075112 (2005)
! (2) J. Daligault, Phys. Rev. Lett. 119, 045002 (2017)
!
!
! Input parameters:
!
! * EK : electron kinetic energy (SI)
! * X : dimensionless factor --> X = q / (2 * k_F)
! * T : temperature (SI)
!
! Output parameters:
!
! * QIVI_RT_3D : relaxation time in seconds
!
!
! Note: There is a factor 1/ h_bar^6 missing in ref. (1) (see eq. (5) ref. (2))
!
! In order to avoid dealing with too large or small numbers, we rewrite
!
! 3 4
! m e m 1
! ------- = -------- -------
! 6 2 2
! h_bar h_bar a
! 0
!
!
! so that the first coefficient becomes
!
! 1 1 k 1
! ------------ ---- ---- ------------- = K0
! 2 pi h_bar EK KS (a_0 KS)^2
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Dec 2020
!
!
USE MATERIAL_PROP, ONLY : RS
USE REAL_NUMBERS, ONLY : ZERO,ONE,TWO,HALF,TTINY,INF
USE CONSTANTS_P1, ONLY : BOHR,H_BAR,M_E,K_B
USE FERMI_SI, ONLY : KF_SI
USE PI_ETC, ONLY : PI,PI2,PI_INV
USE SCREENING_TYPE
USE SCREENING_VEC
USE CHEMICAL_POTENTIAL, ONLY : MU
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: EK,X,T
REAL (WP) :: QIVI_RT_3D
!
REAL (WP) :: MM,ZK,K
REAL (WP) :: KS,LD
REAL (WP) :: ND,NE,BE
REAL (WP) :: NUM,DEN,CC
REAL (WP) :: R0,R1,R2
REAL (WP) :: K0,K1,K2
!
REAL (WP) :: SQRT,EXP,LOG,ATAN
!
! Computing the chemical potential
!
MM = MU('3D',T) ! chemical potential is SI
!
ZK = EK - MM ! xi_p in SI
K = SQRT(TWO * M_E * EK) / H_BAR ! k in SI
!
! Pathological cases
!
IF(EK <= MM) THEN !
QIVI_RT_3D = INF !
GO TO 10 !
END IF !
!
! Computing the screening vector
!
IF(SC_TYPE == 'NO') THEN !
CALL SCREENING_VECTOR('TF','3D',X,RS,T,KS) !
ELSE !
CALL SCREENING_VECTOR(SC_TYPE,'3D',X,RS,T,KS) ! in SI
END IF !
!
R0 = HALF * PI_INV / H_BAR
R1 = K / KS !
R2 = ONE / (BOHR * KS)**2 !
!
LD = TWO * KF_SI / KS ! lambda
BE = ONE / (K_B * T) ! beta
!
! Direct contribution ND and exchange contribution NE
!
IF(ZK < LOG(TTINY)/BE) THEN !
CC = EXP(- BE * ZK) !
ELSE ! <-- pathological
CC = ZERO ! case
END IF !
!
NUM = PI2 / (BE * BE) + ZK * ZK !
DEN = ONE + CC !
!
K0 = R0 * R1 * R2 / EK ! see Note
K1 = NUM / DEN !
K2 = ONE / SQRT(LD * LD + TWO) !
!
ND = K0 * K1 * ( LD / (LD * LD + ONE) + ATAN(LD) ) ! ref. 1 eq. (29)
NE = - K0 * K1 * K2 * ( HALF * PI - ATAN(SQRT(K2 / LD)) ) ! ref. 1 eq. (32)
!
QIVI_RT_3D = ONE / (ND + NE) ! ref. 1 eq. (3)
!
10 RETURN
!
END FUNCTION QIVI_RT_3D
!
!=======================================================================
!
FUNCTION QIV2_RT_3D(EK,X,T)
!
! This function computes the high-density limit Qian-Vignale approximation
! for the relaxation time in the 3D case (direct term onmy)
!
! Reference: (1) Z. Qian and G. Vignale,
! Phys. Rev. B 71, 075112 (2005)
! (2) J. Daligault, Phys. Rev. Lett. 119, 045002 (2017)
!
!
! Input parameters:
!
! * EK : electron kinetic energy (SI)
! * X : dimensionless factor --> X = q / (2 * k_F)
! * T : temperature (SI)
!
! Output parameters:
!
! * QIV2_RT_3D : relaxation time in seconds
!
!
! Note: There is a factor 1/ h_bar^6 missing in ref. (1) (see eq. (5) ref. (2))
!
! In order to avoid dealing with too large or small numbers, we rewrite
!
! 3 4
! m e m 1
! ------- = -------- -------
! 6 2 2
! h_bar h_bar a
! 0
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Dec 2020
!
!
USE MATERIAL_PROP, ONLY : RS
USE REAL_NUMBERS, ONLY : ONE,TWO,HALF,FOURTH
USE CONSTANTS_P1, ONLY : BOHR,H_BAR,M_E
USE FERMI_SI, ONLY : KF_SI
USE PI_ETC, ONLY : PI
USE UTILITIES_1, ONLY : ALFA
USE SCREENING_TYPE
USE SCREENING_VEC
USE CHEMICAL_POTENTIAL, ONLY : MU
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: EK,X,T
REAL (WP) :: QIV2_RT_3D
!
REAL (WP) :: MM,ZK,K
REAL (WP) :: KS
REAL (WP) :: R0,R1,R2,DEN
!
REAL (WP) :: SQRT
!
! Computing the chemical potential
!
MM = MU('3D',T) ! chemical potential is SI
!
ZK = EK - MM ! xi_p in SI
K = SQRT(TWO * M_E * EK) / H_BAR ! k in SI
!
! Computing the screening vector
!
!
IF(SC_TYPE == 'NO') THEN !
CALL SCREENING_VECTOR('TF','3D',X,RS,T,KS) !
ELSE !
CALL SCREENING_VECTOR(SC_TYPE,'3D',X,RS,T,KS) ! in SI
END IF !
!
R0 = FOURTH / H_BAR !
R1 = K / KS !
R2 = ONE / (BOHR * KS)**2 !
!
DEN = R0 * R1 * R2 * ZK * ZK / EK !
!
QIV2_RT_3D = ONE / DEN !
!
END FUNCTION QIV2_RT_3D
!
!=======================================================================
!
FUNCTION RASM_RT_3D(EK,T,RS,U)
!
! This function computes Rammer-Smith approximation for
! the e-e relaxation time in the 3D case
!
! Reference: (1) J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986)
!
! Note: uses the e-impurity scattering time as a reference time
!
!
! Input parameters:
!
! * EK : electron energy (SI)
! * T : temperature (in SI)
! * RS : Wigner-Seitz radius (in units of a_0)
! * U : strength of impurity scattering
!
! Output parameters:
!
! * RASM_RT_3D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,THREE,FOUR,SIX,EIGHT
USE CONSTANTS_P1, ONLY : E
USE FERMI_SI, ONLY : KF_SI,VF_SI
USE PI_ETC, ONLY : PI,PI2,PI3
USE SCREENING_VEC, ONLY : THOMAS_FERMI_VECTOR
USE CHEMICAL_POTENTIAL, ONLY : MU
USE UTILITIES_1, ONLY : DOS_EF
!
IMPLICIT NONE
!
REAL (WP) :: EK,T,RS,U
REAL (WP) :: RASM_RT_3D
REAL (WP) :: KS,IS,NF
REAL (WP) :: MM,L,NUM,DEN
REAL (WP) :: EPS,ZZ
!
REAL (WP) :: SQRT
!
EPS = 1.E-2_WP !
ZZ = 2.612375348685488343348567567924071630571E0_WP ! zeta(3/2)
!
! Computing the Thomas-Fermi screening vector
!
CALL THOMAS_FERMI_VECTOR('3D',KS) !
!
! Computing the chemical potential
!
MM = MU('3D',T) !
!
! Computing the density of states at Fermi level
!
NF = DOS_EF('3D') !
!
! Impurity scattering rate (1/tau)
!
IS = PI * U * U * NF ! ref. 1 eq. (4.13)
!
! Mean free path
!
L = VF_SI / IS !
!
IF(T < EPS) THEN ! zero temperature
!
IF(EK < IS) THEN !
!
NUM = FOUR * SQRT(IS) * KF_SI * KF_SI * L * L !
DEN = EK * SQRT(SIX * EK) !
!
RASM_RT_3D = NUM / DEN ! ref. 1 eq. (4.73)
!
ELSE !
!
IF(KS < KF_SI) THEN !
!
NUM = 64.0E0_WP * KF_SI * MM !
DEN = PI2 * KS * EK * EK !
!
RASM_RT_3D = NUM / DEN ! ref. 1 eq. (4.74)
!
ELSE !
!
NUM = 16.0E0_WP * MM !
DEN = PI * EK * EK !
!
RASM_RT_3D = NUM / DEN ! ref. 1 eq. (4.74)
!
END IF !
END IF !
!
ELSE !
!
IF(T < IS) THEN !
!
NUM = 16.0E0_WP * KF_SI * L * MM !
DEN = THREE * SQRT(THREE * PI) * ZZ * & !
(SQRT(EIGHT) - ONE) * SQRT(IS * T * T * T ) !
!
RASM_RT_3D = NUM / DEN ! ref. 1 eq. (4.76)
!
ELSE !
!
IF(KS < KF_SI) THEN !
!
NUM = EIGHT * VF_SI * VF_SI * KS !
DEN = PI3 * E * E * T * T !
!
RASM_RT_3D = NUM / DEN ! ref. 1 eq. (4.77)
!
ELSE !
!
NUM = 16.0E0_WP * MM !
DEN = PI3 * T * T !
!
RASM_RT_3D = NUM / DEN ! ref. 1 eq. (4.77)
!
END IF !
END IF !
!
END IF !
!
END FUNCTION RASM_RT_3D
!
!=======================================================================
!
FUNCTION TAI0_RT_3D(RS,T)
!
! This function computes Tanaka-Ichimaru approximation for
! the relaxation time at q = 0 in the 3D case
!
! References: (1) S. Tanaka and S. Ichimaru, Phys. Rev. A 35,
! 4743-4754 (1987)
! (2) S. Ichimaru, Rev. Mod. Phys. 54, 1017-1059 (1982)
!
!
! Validity: This relaxation time is valid for strongly coupled,
! classical one-component plasma
!
!
! Input parameters:
!
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : temperature (in SI)
!
! Output parameters:
!
! * TAI0_RT_3D : relaxation time in seconds
!
!
! Formula: Following the derivation in the user's guide, we obtain
!
!
! 1
! TAU = ETA_L x ---------------------------------------------------
! n k_B T + 1 - n h_bar omega_p^2 Gamma_I
! ----- ---------------------------
! K_T omega_F
!
!
!
! Author : D. Sébilleau
!
! Last modified : 9 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,FOUR,HALF,THIRD
USE PI_ETC, ONLY : PI_INV
USE CONSTANTS_P1, ONLY : H_BAR,K_B
USE FERMI_SI, ONLY : EF_SI,KF_SI
USE UTILITIES_1, ONLY : ALFA,RS_TO_N0
USE VISCOSITY, ONLY : LHPO_VISC_3D
USE ASYMPT, ONLY : G0,GI
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: RS,T
REAL (WP) :: TAI0_RT_3D
!
REAL (WP) :: ETA,ETA_L
REAL (WP) :: N0,ALPHA,KBT
REAL (WP) :: OMP,OMF
REAL (WP) :: E1,E2,E3
REAL (WP) :: NUM,DEN,TAU_0
!
! Computing the viscosity (LHPO case only)
!
ETA = LHPO_VISC_3D(RS,T) !
!
ETA_L = FOUR * THIRD * ETA ! longitudinal viscosity
!
! Computing the electron density
!
N0 = RS_TO_N0('3D',RS) !
!
ALPHA = ALFA('3D') !
!
KBT = K_B * T !
OMP = ENE_P_SI / H_BAR !
OMF = EF_SI / H_BAR !
!
! Computing the energies in the denominator
!
E1 = KBT !
E2 = TWO * THIRD * EF_SI * (ONE - FOUR * PI_INV * & !
ALPHA * RS * G0) !
E3 = - HALF * ENE_P_SI * OMP * GI / OMF !
!
NUM = ETA_L !
DEN = N0 * (E1 + E2 + E3) !
!
TAI0_RT_3D = NUM / DEN !
!
END FUNCTION TAI0_RT_3D
!
!=======================================================================
!
FUNCTION TAIQ_RT_3D(X,RS,T)
!
! This function computes the relaxation time as a function of q
!
! References: (1) S. Tanaka and S. Ichimaru, Phys. Rev. A 35,
! 4743-4754 (1987)
!
!
! Validity: This relaxation time is valid for strongly coupled,
! classical one-component plasma
!
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : temperature (SI)
!
! Output parameters:
!
! * TAIQ_RT_3D : relaxation time in seconds
!
!
!
! Author : D. Sébilleau
!
! Last modified : 9 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO
USE FERMI_SI, ONLY : KF_SI
USE CONSTANTS_P1, ONLY : BOHR
USE DAMPING_VALUES, ONLY : QD_TYPE,ZETA
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: X,RS,T
REAL (WP) :: Q_SI,Q_FACT,XX,X2,TAU_0
REAL (WP) :: TAIQ_RT_3D
!
REAL (WP) :: EXP
!
Q_SI = TWO * X * KF_SI ! q in SI
!
XX = RS * BOHR * Q_SI / ZETA !
X2 = XX * XX !
!
! Computing the q-dependent factor
!
IF(QD_TYPE == 'NONE') THEN !
!
Q_FACT = ONE !
!
ELSE IF(QD_TYPE == 'GAUS') THEN !
!
Q_FACT = EXP(- X2) !
!
ELSE IF(QD_TYPE == 'LORE') THEN !
!
Q_FACT = ONE / (ONE + X2) !
!
END IF !
!
! Computing the q = 0 value (TAIC case only)
!
TAU_0 = TAI0_RT_3D(RS,T) !
!
TAIQ_RT_3D = TAU_0 * Q_FACT !
!
END FUNCTION TAIQ_RT_3D
!
!=======================================================================
!
FUNCTION UTIC_RT_3D(X,RS,T,SQ_TYPE,GQ_TYPE)
!
! This function computes low-q Utsumi-Ichimaru approximation for
! the relaxation time in the 3D case
!
! Reference: (1) K. Utsumi and S. Ichimaru,
! Phys. Rev. B 22, 1522-1533 (1980)
!
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : temperature (in SI)
! * SQ_TYPE : structure factor approximation (3D)
! * GQ_TYPE : local-field correction type (3D)
!
! Output parameters:
!
! * UTIC_RT : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 2 Dec 2020
!
!
USE REAL_NUMBERS, ONLY : TWO,FOUR,HALF
USE CONSTANTS_P1, ONLY : H_BAR,M_E
USE FERMI_SI, ONLY : EF_SI,KF_SI
USE PI_ETC, ONLY : PI
USE SQUARE_ROOTS, ONLY : SQR3
USE SCREENING_VEC, ONLY : THOMAS_FERMI_VECTOR
USE SPECIFIC_INT_2, ONLY : INT_SQM1
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: X,RS,T
REAL (WP) :: UTIC_RT_3D
!
REAL (WP) :: MAX_X
REAL (WP) :: Q_SI
REAL (WP) :: OMQ,OMP,OMF
REAL (WP) :: KS,X_TF
REAL (WP) :: IN
REAL (WP) :: NUM,DEN
!
INTEGER :: IN_MODE,NSIZE,LL
!
CHARACTER (LEN = 4) :: GQ_TYPE
CHARACTER (LEN = 3) :: SQ_TYPE
!
IN_MODE = 3 !
!
MAX_X = TWO ! integral upper bound
NSIZE = 200 ! number of integration points
LL = 0 ! unused parameter for INT_SQM1
!
Q_SI = TWO * X * KF_SI ! q in SI
!
OMQ = HALF * H_BAR * Q_SI * Q_SI / M_E ! omega_q in SI
OMP = ENE_P_SI / H_BAR ! omega_p in SI
OMF = EF_SI / H_BAR ! omega_F in SI
!
! Computing Thomas-Fermi screening vector
!
CALL THOMAS_FERMI_VECTOR('3D',KS) !
!
X_TF = KS / KF_SI ! q_{TF} / k_F
!
! Computing the integral
!
CALL INT_SQM1(NSIZE,MAX_X,IN_MODE,RS,T,X_TF,LL,SQ_TYPE, &!
GQ_TYPE,IN) !
!
NUM = - FOUR * SQR3 * OMF * KF_SI !
DEN = PI * OMQ * OMP * KS * IN !
!
UTIC_RT_3D = NUM / DEN ! ref. 1 eq. (5.4)
!
END FUNCTION UTIC_RT_3D
!
!=======================================================================
!
SUBROUTINE EE_RT_2D(EE_TYPE,RS,T,EK,TAU_E,EPS,U,B,I_ET, &
H_TYPE,TEI,TAU)
!
! This subroutine computes the electron-electron relaxation time
! in 2D systems
!
!
! Input parameters:
!
! * EE_TYPE : relaxation time functional for electron-phonon
! EE_TYPE = 'FUAB' --> Fukuyama-Abrahams approx.
! EE_TYPE = 'LUFO' --> Lucas-Fong approx. -graphene-
! EE_TYPE = 'QIVI' --> Quinn-Vignale approx.
! EE_TYPE = 'RASM' --> Rammer-Smith approx.
! EE_TYPE = 'REWI' --> Reizer-Wilkins approx.
! EE_TYPE = 'SHAS' --> Sharma-Ashraf approx.
! EE_TYPE = 'ZHDA' --> Zhang-Das Sarma approx.
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : temperature (SI)
! * EK : electron kinetic energy (SI)
! * TAU_E : ELASTIC scattering time (SI)
! * EPS : substrate dielectric constant
! * U : strength of impurity scattering
! * B : interlayer distance (SI)
! * I_ET : switch
! I_ET = 1 --> relaxation time = f(T)
! I_ET = 2 --> relaxation time = f(EK)
! * H_TYPE : heterostructure type
! H_TYPE = 'SSL1' semiconductor superlattice of type I
! H_TYPE = 'SSL2' semiconductor superlattice of type II
! * TEI : electron-impurity collision time
!
!
! Internal parameter
!
! * I_F : switch for choice of formula (for 'LUFO')
! I_F = 1 --> eq. (4) ref. 1 graphene
! I_F = 2 --> eq. (20) ref. 1 2D Fermi liquid
! I_F = 3 --> eq. (129) ref. 1 collinear scattering
! I_F = 4 --> eq. (134) ref. 1 imbalance mode
! I_F = 5 --> eq. (143) ref. 1 graphene in Fermi liquid limit
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
IMPLICIT NONE
!
CHARACTER (LEN = 4) :: EE_TYPE,H_TYPE
!
REAL (WP) :: RS,T,EK,TAU_E,EPS,U,B,TEI
REAL (WP) :: TAU
!
INTEGER :: I_ET,I_F
!
I_F=1 !
!
IF(EE_TYPE == 'FUAB') THEN !
TAU=FUAB_RT_2D(TAU_E,T) !
ELSE IF(EE_TYPE == 'LUFO') THEN !
TAU=LUFO_RT_2D(T,EPS,I_F) !
ELSE IF(EE_TYPE == 'QIVI') THEN !
TAU=QIVI_RT_2D(EK,T,RS) !
ELSE IF(EE_TYPE == 'RASM') THEN !
TAU=RASM_RT_2D(EK,T,RS,U) !
ELSE IF (EE_TYPE == 'REWI') THEN !
TAU=REWI_RT_2D(EK,T,RS,B,I_ET,H_TYPE) !
ELSE IF(EE_TYPE == 'SHAS') THEN !
TAU=SHAS_RT_2D(EK,TEI) !
ELSE IF(EE_TYPE == 'ZHDA') THEN !
TAU=ZHDA_RT_2D(EK,T) !
END IF !
!
END SUBROUTINE EE_RT_2D
!
!=======================================================================
!
FUNCTION FUAB_RT_2D(TAU,T)
!
! This function computes Fukuyama-Abrahams approximation for
! the INELASTIC scattering time in 2D disordered metals
!
! Reference: (1) H. Fukuyama and E. Abrahams, Phys. Rev. B 27,
! 5976-5980 (1983)
!
!
! Input parameters:
!
! * TAU : ELASTIC scattering time (SI)
! * T : temperature (SI)
!
! Output parameters:
!
! * FUAB_RT_2D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : TWO,FOUR,HALF
USE CONSTANTS_P1, ONLY : H_BAR,M_E,E,K_B
USE FERMI_SI, ONLY : EF_SI,VF_SI
USE PI_ETC, ONLY : PI
!
IMPLICIT NONE
!
REAL (WP) :: TAU,T
REAL (WP) :: FUAB_RT_2D
REAL (WP) :: KBT,HBT,D,T1,KK
!
REAL (WP) :: DLOG
!
KBT=K_B*T !
HBT=H_BAR/TAU !
D=HALF*VF_SI*VF_SI*TAU ! diffusion coefficient
KK=TWO*M_E*E*E !
T1=FOUR*EF_SI*EF_SI*TAU*TAU*D*KK*KK ! ref. 1 eq. (2.25)
!
IF(KBT > HBT) THEN !
FUAB_RT_2D=HALF*PI*KBT*KBT*DLOG(EF_SI/KBT)/EF_SI ! ref. 1 eq. (3.1)
ELSE !
FUAB_RT_2D=HALF*KBT*DLOG(T1/KBT)/(EF_SI*TAU) ! ref. 1 eq. (3.2)
END IF !
!
END FUNCTION FUAB_RT_2D
!
!=======================================================================
!
FUNCTION LUFO_RT_2D(T,EPS,I_F)
!
! This function computes Lucas-Fong 2D relaxation time in graphene
! due to e-e interactions
!
!
! Reference: (1) A. Lucas and K. C. Fong, J. Phys.: Condens. Matter
! 30, 053001 (2018)
!
! Input parameters:
!
! * T : temperature (in SI)
! * EPS : substrate dielectric constant
! * I_F : switch for choice of formula
! I_F = 1 --> eq. (4) ref. 1 graphene
! I_F = 2 --> eq. (20) ref. 1 2D Fermi liquid
! I_F = 3 --> eq. (129) ref. 1 collinear scattering
! I_F = 4 --> eq. (134) ref. 1 imbalance mode
! I_F = 5 --> eq. (143) ref. 1 graphene in Fermi liquid limit
!
! Output parameters:
!
! * LUFO_RT_2D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 23 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE
USE CONSTANTS_P1, ONLY : H_BAR,E,K_B
USE FERMI_SI, ONLY : EF_SI,VF_SI
USE PI_ETC, ONLY : PI
!
IMPLICIT NONE
!
REAL (WP) :: T,EPS
REAL (WP) :: LUFO_RT_2D
REAL (WP) :: AL,NEE
!
REAL (WP) :: MIN,DLOG
!
INTEGER :: I_F
!
AL=E*E/(EPS*H_BAR*VF_SI) ! eff. fine struct. const.
!
IF(I_F == 1) THEN !
NEE=AL*AL*K_B*T*MIN(ONE,K_B*T/EF_SI)/H_BAR !
LUFO_RT_2D=ONE/NEE ! ref. 1 eq. (4)
ELSE IF(I_F == 2) THEN !
LUFO_RT_2D=H_BAR*EF_SI/(AL*AL*K_B*T*K_B*T) ! ref. 1 eq. (20)
ELSE IF(I_F == 3) THEN !
NEE=AL*AL*K_B*T/(H_BAR*DLOG(ONE/AL)) !
LUFO_RT_2D=ONE/NEE ! ref. 1 eq. (129)
ELSE IF(I_F == 4) THEN !
NEE=AL*AL*AL*AL*K_B*T/H_BAR !
LUFO_RT_2D=ONE/NEE ! ref. 1 eq. (134)
ELSE IF(I_F == 5) THEN !
NEE=T*T/DLOG(K_B*T/EF_SI) !
LUFO_RT_2D=ONE/NEE ! ref. 1 eq. (143)
END IF !
!
END FUNCTION LUFO_RT_2D
!
!=======================================================================
!
FUNCTION QIVI_RT_2D(EK,T,RS)
!
! This function computes Qian-Vignale approximation for
! the relaxation time in the 2D case
!
! Reference: (1) Z. Qian and G. Vignale,
! Phys. Rev. B 71, 075112 (2005)
!
!
! Input parameters:
!
! * EK : electron energy (SI)
! * T : temperature (in SI)
! * RS : Wigner-Seitz radius (dimensionless factor)
!
! Output parameters:
!
! * QIVI_RT_2D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,HALF,FOURTH
USE CONSTANTS_P1, ONLY : K_B
USE FERMI_SI, ONLY : EF_SI
USE PI_ETC, ONLY : PI,PI_INV
USE SQUARE_ROOTS, ONLY : SQR2
USE SCREENING_VEC, ONLY : THOMAS_FERMI_VECTOR
USE CHEMICAL_POTENTIAL, ONLY : MU
!
IMPLICIT NONE
!
REAL (WP) :: EK,T,RS
REAL (WP) :: QIVI_RT_2D
REAL (WP) :: MM,ZK,KS,KT
REAL (WP) :: NN
REAL (WP) :: K0,K1,K2
!
REAL (WP) :: DLOG
!
! Computing the chemical potential
!
MM=MU('2D',T) !
!
ZK=EK-MM !
KT=K_B*T !
!
! Computing the Thomas-Fermi screening vector
!
CALL THOMAS_FERMI_VECTOR('2D',KS) !
!
K0=FOURTH*ZK*ZK*PI_INV/EF_SI !
K1=0.75E0_WP - ( RS/(SQR2 * (RS+SQR2)**2) ) ! ref. 1 eq. (61)
!
IF(KT < ZK) THEN !
!
K0=FOURTH*ZK*ZK*PI_INV/EF_SI !
K2=TWO*EF_SI/ZK !
NN=K0*K1*DLOG(K2) ! ref. 1 eq. (60)
!
ELSE !
!
K0=-0.125E0_WP*PI*KT*KT/EF_SI !
K2=HALF*KT/EF_SI !
NN=K0*K1*DLOG(K2) ! ref. 1 eq. (72)
!
END IF !
!
QIVI_RT_2D=ONE/NN !
!
END FUNCTION QIVI_RT_2D
!
!=======================================================================
!
FUNCTION RASM_RT_2D(EK,T,RS,U)
!
! This function computes Rammer-Smith approximation for
! the e-e relaxation time in the 2D case
!
! Reference: (1) J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986)
!
! Note: uses the e-impurity scattering time as a reference time
!
!
! Input parameters:
!
! * EK : electron energy (SI)
! * T : temperature (in SI)
! * RS : Wigner-Seitz radius (in units of a_0)
! * U : strength of impurity scattering
!
! Output parameters:
!
! * RASM_RT_3D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : TWO,EIGHT,HALF
USE CONSTANTS_P1, ONLY : M_E
USE FERMI_SI, ONLY : VF_SI
USE PI_ETC, ONLY : PI,PI2
USE SCREENING_VEC, ONLY : THOMAS_FERMI_VECTOR
USE CHEMICAL_POTENTIAL, ONLY : MU
USE UTILITIES_1, ONLY : RS_TO_N0
!
IMPLICIT NONE
!
REAL (WP) :: EK,T,RS,U
REAL (WP) :: RASM_RT_2D
REAL (WP) :: KS,IS,MM
REAL (WP) :: N0,NUM,DEN
REAL (WP) :: D,T1
REAL (WP) :: EPS
!
REAL (WP) :: DLOG,DABS
!
EPS=1.0E-2_WP !
!
! Computing the Thomas-Fermi screening vector
!
CALL THOMAS_FERMI_VECTOR('2D',KS) !
!
! Computing the chemical potential
!
MM=MU('2D',T) !
!
! Computing the electron density
!
N0=RS_TO_N0('2D',RS) !
!
! Impurity scattering rate (1/tau)
!
IS=PI*U*U*N0 ! ref. 1 eq. (4.13)
!
! 2D diffusion coefficient
!
D=HALF*VF_SI*VF_SI/IS !
!
T1=(TWO*M_E*D)**2 * D*KS*KS !
!
IF(T < EPS) THEN ! zero temperature
!
NUM=EIGHT*PI2*MM !
DEN=EK*EK*DLOG(DABS(EK/MM)) !
RASM_RT_2D=NUM/DEN ! ref. 1 eq. (4.81)
!
ELSE
!
IF(T < IS) THEN !
NUM=TWO*M_E*D !
DEN=T*DLOG(T1/T) !
RASM_RT_2D=NUM/DEN ! ref. 1 eq. (4.83)
ELSE !
NUM=TWO*PI*MM !
DEN=T*T*DLOG(MM/T) !
RASM_RT_2D=NUM/DEN ! ref. 1 eq. (4.84)
END IF !
!
END IF !
!
END FUNCTION RASM_RT_2D
!
!=======================================================================
!
FUNCTION REWI_RT_2D(EK,T,RS,B,I_ET,H_TYPE)
!
! This function computes Reizer-Wilkins approximation for
! the electron-electron relaxation time in heterostructures
!
! Reference: (1) M. Reizer and J. W. Wilkins, Phys. Rev. B 55,
! R7363-R7366 (1997)
!
!
! Input parameters:
!
! * EK : electron energy (SI)
! * T : temperature (SI)
! * RS : Wigner-Seitz radius (in units of a_0)
! * B : interlayer distance (SI)
! * I_ET : switch
! I_ET = 1 --> relaxation time = f(T)
! I_ET = 2 --> relaxation time = f(EK)
! * H_TYPE : heterostructure type
! H_TYPE = 'SSL1' semiconductor superlattice of type I
! H_TYPE = 'SSL2' semiconductor superlattice of type II
!
! Output parameters:
!
! * REWI_RT_2D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,FOUR
USE CONSTANTS_P1, ONLY : K_B
USE FERMI_SI, ONLY : EF_SI,KF_SI
USE PI_ETC, ONLY : PI,PI_INV
USE SCREENING_VEC, ONLY : DEBYE_VECTOR
!
IMPLICIT NONE
!
CHARACTER (LEN = 4) :: H_TYPE
!
INTEGER :: I_ET,LOGF
!
REAL (WP) :: EK,T,RS,B
REAL (WP) :: REWI_RT_2D
REAL (WP) :: K0,K1,KD,KBT,KDB,TKDB,PB
REAL (WP) :: CF,NUM,DEN,NEE
!
REAL (WP) :: DLOG
!
LOGF=6 !
!
KBT=K_B*T !
K0=KBT/EF_SI !
K1=EK/EF_SI !
PB=MIN(TWO*KF_SI*B,ONE) ! ref. 1 eq. (19)
!
! Computing the Debye screening vector
!
CALL DEBYE_VECTOR('2D',T,RS,KD) !
!
KDB=KD*B !
TKDB=KD*B+KD*B !
!
IF(H_TYPE == 'SSL1') THEN !
IF(I_ET == 1) THEN !
CF=0.125E0_WP*PI*KBT*KBT/EF_SI !
NUM=TWO*(TWO*KF_SI-K0)*KD !
DEN=(TWO*KF_SI+KD)*(KD+K0) !
NEE=CF*( DLOG(FOUR*EF_SI/KBT) - & !
DLOG(TWO*KF_SI/(KD+K0)) - NUM/DEN & !
) ! ref. 1 eq. (13)
ELSE IF(I_ET == 2) THEN !
CF=0.125E0_WP*EK*EK*PI_INV/EF_SI !
NUM=TWO*(TWO*KF_SI-K1)*KD !
DEN=(TWO*KF_SI+KD)*(KD+K1) !
NEE=CF*( DLOG(FOUR*EF_SI/KBT) - & ! ref. 1 eq. (14)
DLOG(TWO*KF_SI/(KD+K1)) - NUM/DEN & !
) !
END IF !
ELSE IF(H_TYPE == 'SSL2') THEN !
IF(I_ET == 1) THEN !
CF=PI*KBT*KBT/( 32.0E0_WP*EF_SI*(ONE+KDB)*(ONE+KDB) ) !
NUM=FOUR*(ONE+(ONE+TKDB)**2) * KDB * (PB-K0*B)*(ONE+KDB) !
DEN=(PB+TKDB*(ONE+KDB))*(K0*B+TKDB*(ONE+KDB)) !
NEE=CF*( ( TWO+(ONE+TKDB)**2 ) * & !
( DLOG(TWO*EF_SI*PB/(KBT*KF_SI*B)) - & ! ref. 1 eq. (19)
DLOG(PB+TKDB*(ONE+KDB)/(K0*B+TKDB*(ONE+KDB)))& !
) - NUM/DEN & !
) !
ELSE IF(I_ET == 2) THEN !
WRITE(LOGF,10) !
STOP !
END IF !
END IF !
!
REWI_RT_2D=ONE/NEE !
!
! Format
!
10 FORMAT(//,5X,'<<<<< I_ET=2 not defined for SSL2 >>>>>',//)
!
END FUNCTION REWI_RT_2D
!
!=======================================================================
!
FUNCTION SHAS_RT_2D(EK,TEI)
!
! This function computes Sharma-Ashraf approximation for
! the relaxation time in the presence of a random
! impurity potential for a quantum well
!
! Reference: (1) A. C. Sharma and S. S. Z. Ashraf, J. Phys.:
! Condens. Matter 16, 3117-3132 (2004)
!
!
! Input parameters:
!
! * EK : electron energy (SI)
! * TEI : electron-impurity collision time
!
! Output parameters:
!
! * SHAS_RT_2D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : FOUR
USE CONSTANTS_P1, ONLY : H_BAR
USE FERMI_SI, ONLY : EF_SI,KF_SI
USE PI_ETC, ONLY : PI
USE SCREENING_VEC, ONLY : THOMAS_FERMI_VECTOR
!
IMPLICIT NONE
!
REAL (WP) :: EK,TEI
REAL (WP) :: SHAS_RT_2D
REAL (WP) :: KS,K,X,S,K2,S2,X2,NN
REAL (WP) :: NU1,NU2,DE1,DE2
!
REAL (WP) :: DLOG
!
! Computing the Thomas-Fermi screening vector
!
CALL THOMAS_FERMI_VECTOR('2D',KS) !
!
! Dimensionless variables
!
K=KS/KF_SI !
X=EK/EF_SI !
S=H_BAR/(TEI*EF_SI) !
K2=K*K !
S2=S*S !
X2=X*X !
!
NU1=FOUR*K2+S2 !
DE1=NU1-X2 !
NU2=NU1-X2 !
DE2=S2+S2 !
NN=NU1*DLOG(NU1/DE1) + X2*DLOG(NU2/DE2) - X2 !
!
SHAS_RT_2D=16.0E0_WP*PI*H_BAR/(NN*EF_SI) ! ref. 1 eq. (17)
!
END FUNCTION SHAS_RT_2D
!
!=======================================================================
!
FUNCTION ZHDA_RT_2D(EK,T)
!
! This function computes Zhang-Das Sarma approximation for
! the relaxation time in the 2D case
!
! References: (1) L. Zhang and S. Das Sarma, Phys. Rev. B 53,
! 9964-9967 (1996)
!
! Input parameters:
!
! * EK : electron energy in J
! * T : temperature (in SI)
!
! Output parameters:
!
! * ZHDA_RT_2D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : TWO,FOURTH
USE CONSTANTS_P1, ONLY : H_BAR,K_B
USE FERMI_SI, ONLY : EF_SI
USE PI_ETC, ONLY : PI,PI_INV
!
IMPLICIT NONE
!
REAL (WP) :: EK,T
REAL (WP) :: ZHDA_RT_2D
REAL (WP) :: R1,R2,R3,DE
REAL (WP) :: GAMMA
!
REAL (WP) :: DLOG
!
DE=EK-EF_SI ! energy with respect to E_F
R1=K_B*T/EF_SI !
R2=DE/EF_SI !
R3=K_B*T/DE !
!
IF(R3 > DE) THEN !
GAMMA=-FOURTH*PI*EF_SI*R1*R1*DLOG(R1)/H_BAR ! ref. (1) eq. (7)
ELSE !
GAMMA=-FOURTH*PI_INV*EF_SI*R2*R2*DLOG(R2)/H_BAR ! ref. (1) eq. (8)
END IF !
!
ZHDA_RT_2D=TWO/GAMMA !
!
END FUNCTION ZHDA_RT_2D
!
!=======================================================================
!
SUBROUTINE EE_RT_1D(EE_TYPE,EK,TEI,TAU)
!
! This subroutine computes the electron-electron relaxation time
! in 1D systems
!
!
! Input parameters:
!
! * EE_TYPE : relaxation time functional for electron-phonon
! EE_TYPE = 'SHAS' --> Sharma-Ashraf approx.
!
! * EK : electron energy (SI)
! * TEI : electron-impurity collision time
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
IMPLICIT NONE
!
CHARACTER (LEN = 4) :: EE_TYPE
!
REAL (WP) :: EK,TEI
REAL (WP) :: TAU
!
IF(EE_TYPE == 'SHAS') THEN !
TAU=SHAS_RT_1D(EK,TEI) !
END IF !
!
END SUBROUTINE EE_RT_1D
!
!=======================================================================
!
FUNCTION SHAS_RT_1D(EK,TEI)
!
! This function computes Sharma-Ashraf approximation for
! the relaxation time in the presence of a random
! impurity potential for a quantum wire
!
! Reference: (1) A. C. Sharma and S. S. Z. Ashraf, J. Phys.:
! Condens. Matter 16, 3117-3132 (2004)
!
!
! Input parameters:
!
! * EK : electron energy (SI)
! * TEI : electron-impurity collision time
!
! Output parameters:
!
! * QIVI_RT_1D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : TWO
USE CONSTANTS_P1, ONLY : H_BAR
USE FERMI_SI, ONLY : EF_SI
USE PI_ETC, ONLY : PI,PI_INV
!
IMPLICIT NONE
!
REAL (WP) :: EK,TEI
REAL (WP) :: SHAS_RT_1D
REAL (WP) :: X,S,S2,X2,NN
REAL (WP) :: NU1,NU2,DE1,DE2
!
REAL (WP) :: DSQRT,DLOG
!
! Dimensionless variables
!
X=EK/EF_SI !
S=H_BAR/(TEI*EF_SI) !
S2=S*S !
X2=X*X !
!
NU1=S2 !
DE1=TWO*PI*DSQRT(S2+X2) !
NU2=DSQRT(S2+X2) - X !
DE2=DSQRT(S2+X2)+ X !
NN=X*PI_INV + NU1*DLOG(NU2/DE2)/DE1 !
!
SHAS_RT_1D=H_BAR/(NN*EF_SI) ! ref. 1 eq. (33)
!
END FUNCTION SHAS_RT_1D
!
!------ 3) electron-impurity case --------------------------------------------
!
!
!=======================================================================
!
SUBROUTINE EI_RT_3D(EI_TYPE,EK,T,RS,NI,EPS_B,MASS_E,TAU)
!
! This subroutine computes the electron-impurity relaxation time
! in 3D systems
!
!
! Input parameters:
!
! * EI_TYPE : relaxation time functional for electron-impurity
! EI_TYPE = 'HEAP' --> Hertel-Appel approximation
! * EK : electron energy
! * T : temperature (in SI)
! * RS : Wigner-Seitz radius (in units of a_0)
! * NI : impurity concentration (SI)
! * EPS_B : background dielectric constant
! * MASS_E : electron effective mass
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
IMPLICIT NONE
!
CHARACTER (LEN = 4) :: EI_TYPE
!
REAL (WP) :: EK,T,RS,NI
REAL (WP) :: EPS_B,MASS_E
REAL (WP) :: TAU
!
IF(EI_TYPE == 'HEAP') THEN !
TAU=HEAP_RT_3D(EK,T,RS,NI,EPS_B,MASS_E) !
END IF !
!
END SUBROUTINE EI_RT_3D
!
!=======================================================================
!
FUNCTION HEAP_RT_3D(EK,T,RS,NI,EPS_B,MASS_E)
!
! This function computes Hertel and Appel approximation for
! the electron-impurity relaxation time in the 3D case
!
! References: (1) P. Hertel and J. Appel, Phys. Rev. B 26, 5730-5742 (1982)
!
!
! Input parameters:
!
! * EK : electron energy
! * T : temperature (in SI)
! * RS : Wigner-Seitz radius (in units of a_0)
! * NI : impurity concentration (SI)
! * EPS_B : background dielectric constant
! * MASS_E : electron effective mass
!
! Output parameters:
!
! * HEAP_RT_3D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO
USE CONSTANTS_P1, ONLY : E
USE PI_ETC, ONLY : PI
USE SQUARE_ROOTS, ONLY : SQR2
USE UTILITIES_1, ONLY : RS_TO_N0
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
REAL (WP) :: EK,T,RS,NI
REAL (WP) :: EPS_B,MASS_E
REAL (WP) :: HEAP_RT_3D
REAL (WP) :: B,NU,E2,E4
REAL (WP) :: EPS_INF
REAL (WP) :: N0
!
REAL (WP) :: DSQRT,DLOG
!
E2=E*E !
E4=E2*E2 !
!
! Computing the electron density
!
N0=RS_TO_N0('3D',RS) !
!
B=TWO*EPS_B*MASS_E*T/(PI*E2*N0) ! ref. (1) eq. (41)
NU=PI*NI*E4*(DLOG(ONE+B*EK) - B*EK/(ONE+B*EK))/ & !
(SQR2*EPS_INF*EPS_INF*DSQRT(MASS_E)*(EK**(1.5E0_WP))) !
!
HEAP_RT_3D=ONE/NU !
!
END FUNCTION HEAP_RT_3D
!
!------ 4) ion-plasma case --------------------------------------------
!
!
!=======================================================================
!
SUBROUTINE IP_RT_3D(IP_TYPE,RS,T,TAU)
!
! This subroutine computes the ion plasma relaxation time
! in 3D systems
!
!
! Input parameters:
!
! * IP_TYPE : relaxation time functional for ion plasma
! IP_TYPE = 'SEMO' --> Selchow-Morawetz
! IP_TYPE = 'SPIT' --> Spitzer
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : temperature (in SI)
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
IMPLICIT NONE
!
CHARACTER (LEN = 4) :: IP_TYPE
!
REAL (WP) :: RS,T
REAL (WP) :: TAU
!
IF(IP_TYPE == 'SEMO') THEN !
TAU=SEMO_RT_3D(RS,T) !
ELSE IF(IP_TYPE == 'BLAN') THEN !
TAU=SPIT_RT_3D(RS,T) !
END IF !
!
END SUBROUTINE IP_RT_3D
!
!=======================================================================
!
FUNCTION SEMO_RT_3D(RS,T)
!
! This function computes Selchow-Morawetz approximation for
! the relaxation time in the 3D case
!
! References: (1) A. Selchow and K. Morawetz, Phys. Rev. E 59, 1015-1023 (1999)
!
!
! Input parameters:
!
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : temperature (in SI)
!
! Output parameters:
!
! * SEMO_RT : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO,THIRD
USE CONSTANTS_P1, ONLY : M_E,E,EPS_0,K_B
USE PI_ETC, ONLY : PI
USE UTILITIES_1, ONLY : RS_TO_N0
USE COULOMB_LOG, ONLY : COU_LOG
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
REAL (WP) :: T
REAL (WP) :: SEMO_RT_3D
REAL (WP) :: E2,G,BETA,V_TH
REAL (WP) :: RS,N0
!
REAL (WP) :: DSQRT,DEXP
!
INTEGER :: ICL
!
ICL=1 ! choice of Coulomb
! ! logarithm
BETA=ONE/(K_B*T) !
V_TH=DSQRT(TWO/(BETA*M_E)) ! thermal velocity
E2=E*E !
!
N0=RS_TO_N0('3D',RS) !
!
G=DEXP(COU_LOG(ICL,'3D',T,RS)) !
!
SEMO_RT_3D=ONE/(N0*TWO*THIRD*PI*E2*G*BETA*V_TH/EPS_0) ! ref. (1) eq. (7)
!
END FUNCTION SEMO_RT_3D
!
!=======================================================================
!
FUNCTION SPIT_RT_3D(RS,T)
!
! This function computes Spitzer approximation for
! the relaxation time in the 3D case
!
! References: (1) A. Selchow, G. Röpke and A. Wierling,
! Contrib. Plasma Phys. 42, 43-54 (2002)
!
!
! Input parameters:
!
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : temperature (in SI)
!
! Output parameters:
!
! * SPIT_RT : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 23 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,HALF
USE CONSTANTS_P1, ONLY : M_E,E,COULOMB,K_B
USE UTILITIES_1, ONLY : RS_TO_N0
USE PLASMA, ONLY : ZION
USE PLASMA_SCALE
!
IMPLICIT NONE
!
REAL (WP) :: T
REAL (WP) :: SPIT_RT_3D
REAL (WP) :: BETA,M_EI,E2,E4
REAL (WP) :: NONID,DEGEN
REAL (WP) :: RS,N0
!
REAL (WP) :: DSQRT,DLOG
!
M_EI=M_E !
BETA=ONE/(K_B*T) !
E2=E*E !
E4=E2*E2 !
!
N0=RS_TO_N0('3D',RS) !
!
! Computing the plasmon scales
!
CALL PLASMON_SCALE(RS,T,ZION,NONID,DEGEN) !
SPIT_RT_3D=0.591E0_WP*DSQRT(M_EI)/(COULOMB*COULOMB*N0* & ! ref. (1) eq. (30)
(BETA**1.5E0_WP)*E4*HALF*DLOG(1.5E0_WP/(NONID**3)))!
!
END FUNCTION SPIT_RT_3D
!
!------ 5) phase-breaking case --------------------------------------------
!
!
!=======================================================================
!
SUBROUTINE PB_RT_3D(PB_TYPE,T,D,DC,A,TAU)
!
! This subroutine computes the phase-breaking relaxation time
! in 3D systems
!
!
! Input parameters:
!
! * PB_TYPE : relaxation time functional for phase_breaking
! PB_TYPE = 'ALAR' --> Al'tshuler-Aronov
! PB_TYPE = 'BLAN' --> Blanter
!
! * T : temperature (SI)
! * D : diffusion coefficient (SI)
! * DC : diffusion constant (due to imputities)
! * A : width of 2D systems (SI) (unused)
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
IMPLICIT NONE
!
CHARACTER (LEN = 4) :: PB_TYPE
!
REAL (WP) :: T,D,DC,A
REAL (WP) :: TAU
!
IF(PB_TYPE.EQ.'ALAR') THEN !
TAU=ALAR_PB_ND(T,DC,A,'3D') !
ELSE IF(PB_TYPE.EQ.'BLAN') THEN !
TAU=BLAN_PB_3D(T,D) !
END IF !
!
END SUBROUTINE PB_RT_3D
!
!=======================================================================
!
FUNCTION ALAR_PB_ND(T,DC,A,DMN)
!
! This function computes Al'tshuler-Aronov approximation for
! the phase relaxation time in the presence of impurities
!
! Reference: (1) B. L. Al'tshuler and A. G. Aronov, in
! "Electron-Electron Interactions in Disordered
! Solids", A. L. Efros and M. Pollak eds.
! (North-Holland,1985)
!
!
! Input parameters:
!
! * T : temperature (SI)
! * DC : diffusion constant (due to imputities)
! * A : width of 2D systems (SI)
! * DMN : system dimension
!
! Output parameters:
!
! * ARAL_PB_ND : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO,ONE,TWO,FOUR,HALF
USE CONSTANTS_P1, ONLY : H_BAR,M_E,E,COULOMB
USE FERMI_SI, ONLY : KF_SI,VF_SI
USE PI_ETC, ONLY : PI
USE UTILITIES_1, ONLY : D,DOS_EF,KF_TO_N0
!
IMPLICIT NONE
!
CHARACTER (LEN = 2) :: DMN
!
REAL (WP) :: T,DC,A
REAL (WP) :: ALAR_PB_ND
REAL (WP) :: N0,DD,L,EX,TS,SG
REAL (WP) :: N,TAU
REAL (WP) :: K1,NUM,DEN
!
REAL (WP) :: DLOG,DSQRT
!
DD=HALF*D(DMN) !
!
! Computing the density of state at Fermi level
!
N0=DOS_EF(DMN) !
!
EX=TWO/(FOUR-D(DMN)) !
!
! Computing the elastic mean free path from:
!
! D = l^2 /(tau*d) and D = v_F^2 * tau / d
!
L=DC*D(DMN)/VF_SI !
!
! Computing the electron density
!
N=KF_TO_N0(DMN,KF_SI) !
!
TAU=L/VF_SI !
!
! Computing the Drude conductivity:
!
! sigma = e^2 tau * N / m
!
SG=E*E*TAU*N/M_E !
!
IF(DMN == '1D') THEN !
TS=ZERO !
K1=ONE !
NUM=T**EX !
DEN=(DC**DD * N0 * H_BAR*H_BAR)**EX !
ELSE IF(DMN == '2D') THEN !
TS=ZERO !
K1=DLOG( KF_SI*KF_SI*L*A/(H_BAR*H_BAR) ) !
NUM=T**EX !
DEN=(DC**DD * N0 * H_BAR*H_BAR)**EX !
ELSE IF(DMN == '3D') THEN !
TS=(KF_SI*L)**2 / (DSQRT(L/VF_SI) * T**1.5E0_WP) ! tau*
K1=-TS*DLOG(T*TS/H_BAR) !
NUM=E*E*COULOMB*T*DSQRT(TS) !
DEN=TWO*PI*SG*DSQRT(DC)*H_BAR*H_BAR !
END IF !
!
ALAR_PB_ND=TS+K1*NUM/DEN ! ref. 1 eq. (4.9)
!
END FUNCTION ALAR_PB_ND
!
!=======================================================================
!
FUNCTION BLAN_PB_3D(T,D)
!
! This function computes Blanter approximation for phase-breaking
! relaxation time in 3D.
!
! Reference: (1) Ya. M. Blanter, Phys. Rev. B 54, 12807 (1996)
!
!
! Input parameters:
!
! * T : temperature (SI)
! * D : diffusion coefficient (SI)
!
! Output parameters:
!
! * BLAN_PB_3D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE CONSTANTS_P1, ONLY : H_BAR,M_E
USE FERMI_SI, ONLY : KF_SI
USE PI_ETC, ONLY : PI2
!
IMPLICIT NONE
!
REAL (WP) :: T,D
REAL (WP) :: BLAN_PB_3D
REAL (WP) :: N3
!
N3=M_E*KF_SI/(PI2*H_BAR*H_BAR) !
!
BLAN_PB_3D=(D/T)**1.5E0_WP * N3 ! ref. 1 eq. (1)
!
RETURN
!
END FUNCTION BLAN_PB_3D
!
!=======================================================================
!
SUBROUTINE PB_RT_2D(PB_TYPE,T,D,DC,A,DMN,TAU)
!
! This subroutine computes the phase-breaking relaxation time
! in 2D systems
!
!
! Input parameters:
!
! * PB_TYPE : relaxation time functional for phase-breaking
! PB_TYPE = 'ALAR' --> Al'tshuler-Aronov
! PB_TYPE = 'BLAN' --> Blanter
!
! * T : temperature (SI)
! * D : diffusion coefficient (SI)
! * DC : diffusion constant (due to imputities)
! * A : width of 2D systems (SI)
! * DMN : dimension of the system
! DMN = '3D'
! DMN = '2D'
! DMN = 'Q2' quasi-2D
! DMN = '1D'
! DMN = 'Q1' quasi-1D
! DMN = 'Q0' quasi-0D
!
!
!
! Author : D. Sébilleau
!
! Last modified : 22 May 2020
!
IMPLICIT NONE
!
CHARACTER (LEN = 2) :: DMN
CHARACTER (LEN = 4) :: PB_TYPE
!
REAL (WP) :: T,D,DC,A
REAL (WP) :: TAU
!
IF(PB_TYPE == 'ALAR') THEN !
TAU=ALAR_PB_ND(T,DC,A,'2D') !
ELSE IF(PB_TYPE == 'BLAN') THEN !
TAU=BLAN_PB_2D(T,D,DMN,A) !
END IF !
!
END SUBROUTINE PB_RT_2D
!
!=======================================================================
!
FUNCTION BLAN_PB_2D(T,D,DMN,A)
!
! This function computes Blanter approximation for phase-breaking
! relaxation time in 2D.
!
! Reference: (1) Ya. M. Blanter, Phys. Rev. B 54, 12807 (1996)
!
!
! Input parameters:
!
! * T : temperature (SI)
! * D : diffusion coefficient (SI)
! * DMN : dimension of the system
! * A : length of confined direction (SI)
!
! Output parameters:
!
! * BLAN_PB_2D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : TWO
USE FERMI_SI, ONLY : EF_SI,KF_SI,VF_SI
USE PI_ETC, ONLY : PI
!
IMPLICIT NONE
!
CHARACTER (LEN = 2) :: DMN
!
REAL (WP) :: T,D,A
REAL (WP) :: BLAN_PB_2D
REAL (WP) :: N2,TAU,L
!
REAL (WP) :: DLOG,DSQRT
!
N2=KF_SI*KF_SI/(TWO*PI*EF_SI) !
TAU=TWO*D / (VF_SI*VF_SI) ! elastic scattering time
L=DSQRT(TWO*D*TAU) ! mean free path
!
IF(DMN == '2D') THEN !
BLAN_PB_2D=N2*D/T / DLOG(KF_SI*L) ! ref. 1 eq. (10)
ELSE IF(DMN == 'Q2') THEN !
BLAN_PB_2D=N2*D/T * KF_SI*A / DLOG(KF_SI*KF_SI*L*A) ! ref. 1 eq. (10)
END IF !
!
END FUNCTION BLAN_PB_2D
!
!=======================================================================
!
SUBROUTINE PB_RT_1D(PB_TYPE,T,D,DC,A,TAU)
!
! This subroutine computes the phase-breaking relaxation time
! in 1D systems
!
!
! Input parameters:
!
! * PB_TYPE : relaxation time functional for phase breaking
! PB_TYPE = 'ALAR' --> Al'tshuler-Aronov
! PB_TYPE = 'BLAN' --> Blanter
!
! * T : temperature (SI)
! * D : diffusion coefficient (SI)
! * DC : diffusion constant (due to imputities)
! * A : length of confined direction (SI)
!
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
IMPLICIT NONE
!
CHARACTER (LEN = 4) :: PB_TYPE
!
REAL (WP) :: T,D,DC,A
REAL (WP) :: TAU
!
IF(PB_TYPE == 'ALAR') THEN !
TAU=ALAR_PB_ND(T,DC,A,'1D') !
ELSE IF(PB_TYPE == 'BLAN') THEN !
TAU=BLAN_PB_1D(T,D,A) !
END IF !
!
END SUBROUTINE PB_RT_1D
!
!=======================================================================
!
FUNCTION BLAN_PB_1D(T,D,A)
!
! This function computes Blanter approximation for phase-breaking
! relaxation time in 1D.
!
! Reference: (1) Ya. M. Blanter, Phys. Rev. B 54, 12807 (1996)
!
!
! Input parameters:
!
! * T : temperature (SI)
! * D : diffusion coefficient (SI)
! * A : length of confined direction (SI)
!
! Output parameters:
!
! * BLAN_PB_1D : relaxation time in seconds
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : TWO,FOUR,THIRD
USE FERMI_SI, ONLY : KF_SI,VF_SI
!
IMPLICIT NONE
!
REAL (WP) :: T,D,A
REAL (WP) :: BLAN_PB_1D
REAL (WP) :: TAU
!
TAU=TWO*D / (VF_SI*VF_SI) ! elastic scattering time
!
BLAN_PB_1D=TAU**THIRD * (KF_SI*A)**(FOUR*THIRD) / & !
T**(TWO*THIRD) ! ref. 1 eq. (13)
!
END FUNCTION BLAN_PB_1D
!
END MODULE RELAXATION_TIME_STATIC