MsSpec-DFM/New_libraries/DFM_library/DAMPING_LIBRARY/plasmon_damping.f90

627 lines
20 KiB
Fortran
Raw Normal View History

2022-02-02 16:19:10 +01:00
!
!=======================================================================
!
MODULE PLASMON_DAMPING
!
USE ACCURACY_REAL
!
!
CONTAINS
!
!=======================================================================
!
SUBROUTINE PLAS_DAMP_EG_3D(X,RS,T,TAU,PD_TYPE,PL_DISP,SQ_TYPE, &
GQ_TYPE,EC_TYPE,IQ_TYPE,GAMMA_Q)
!
! This subroutine computes the plasmon damping in the 3D case.
!
! ---> electron gas case <---
!
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : system temperature in SI
! * TAU : relaxation time (used for damping) in SI
! * PD_TYPE : method used to compute the plasmon damping (3D)
! PD_TYPE = 'NONE' --> no plasmon damping
! PD_TYPE = 'CALL' --> Callen approximation
! PD_TYPE = 'DGKA' --> DuBois-Gilinsky-Kivelson approximation
! PD_TYPE = 'FEWA' --> Fetter and Walecka approximation
! PD_TYPE = 'JEWS' --> Jewsbury approximation
! PD_TYPE = 'LITI' --> Giuliani-Quinn lifetime approximation
! PD_TYPE = 'MOPE' --> Molinari-Peerani approximation
! PD_TYPE = 'NPSA' --> Ninham-Powel-Swanson approximation
! PD_TYPE = 'SGAA' --> Segui-Gervasoni-Arista approximation
! * PL_DISP : method used to compute the dispersion (3D)
! * SQ_TYPE : structure factor approximation (3D)
! * GQ_TYPE : local-field correction type (3D)
! * EC_TYPE : type of correlation energy functional
! * IQ_TYPE : type of approximation for I(q)
!
!
! Output variables :
!
! * GAMMA_Q : plasmon damping in SI
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO
!
IMPLICIT NONE
!
CHARACTER (LEN = 7) :: PL_DISP
CHARACTER (LEN = 6) :: EC_TYPE
CHARACTER (LEN = 4) :: PD_TYPE,GQ_TYPE
CHARACTER (LEN = 3) :: SQ_TYPE,IQ_TYPE
!
REAL (WP) :: X,RS,T,TAU
REAL (WP) :: GAMMA_Q
!
IF(PD_TYPE == 'NONE') THEN !
GAMMA_Q = ZERO !
ELSE IF(PD_TYPE == 'CALL') THEN !
GAMMA_Q = CALL_PD_3D(X,RS,T) !
ELSE IF(PD_TYPE == 'DGKA') THEN !
GAMMA_Q = DGKA_PD_3D(X,RS,T) !
ELSE IF(PD_TYPE == 'FEWA') THEN !
GAMMA_Q = FEWA_PD_3D(X,RS) !
ELSE IF(PD_TYPE == 'JEWS') THEN !
GAMMA_Q = JEWS_PD_3D(X,RS) !
ELSE IF(PD_TYPE == 'LITI') THEN !
GAMMA_Q = LITI_PD_3D(X,TAU) !
ELSE IF(PD_TYPE == 'MOPE') THEN !
GAMMA_Q = MOPE_PD_3D(X,RS,T) !
ELSE IF(PD_TYPE == 'NPSA') THEN !
GAMMA_Q = NPSA_PD_3D(X,RS,T) !
ELSE IF(PD_TYPE == 'SGAA') THEN !
GAMMA_Q = SGAA_PD_3D(X,RS,T,PL_DISP,SQ_TYPE,GQ_TYPE, & !
EC_TYPE,IQ_TYPE) !
END IF !
!
END SUBROUTINE PLAS_DAMP_EG_3D
!
!=======================================================================
!
FUNCTION CALL_PD_3D(X,RS,T)
!
! This function computes the plasmon damping gamma_q in the
! Callen approximation for the Landau damping
! in a Maxwellian 3D plasma
!
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : system temperature in SI
!
!
! Output variables :
!
! * CALL_PD_3D : plasmon damping (dimensionless)
!
! References: (1) J. D. Callen, Physics of Plasmas 21, 052106 (2014)
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : EIGHT,HALF
USE CONSTANTS_P1, ONLY : H_BAR
USE FERMI_SI, ONLY : KF_SI
USE PI_ETC, ONLY : SQR_PI
USE SCREENING_VEC, ONLY : DEBYE_VECTOR
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
REAL (WP) :: X,RS,T,Y,U,U2,U3
REAL (WP) :: CALL_PD_3D
REAL (WP) :: KD_SI
REAL (WP) :: NUM,DEN
!
REAL (WP) :: SQRT,EXP
!
Y = X + X ! q / k_F
!
CALL DEBYE_VECTOR('3D',T,RS,KD_SI) !
!
U = KD_SI / (Y * KF_SI) ! q /k_D
U2 = U * U !
U3 = U2 * U !
!
NUM = ENE_P_SI * U3 * SQR_PI !
DEN = H_BAR * SQRT(EIGHT) !
!
CALL_PD_3D = NUM* EXP(- HALF * U2 - 1.5E0_WP) / DEN ! ref. (1) eq. (9)
!
END FUNCTION CALL_PD_3D
!
!=======================================================================
!
FUNCTION DGKA_PD_3D(X,RS,T)
!
! This function computes the plasmon Landau damping gamma_q in the
! DuBois-Gilinsky-Kivelson approximation
!
! References:
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : system temperature in SI
!
!
! Output variables :
!
! * DGKA_PD_3D : plasmon damping
!
! References: (1) D. F. DuBois, V. Gilinsky and M. G. Kivelson,
! Phys. Rev. Lett. 8, 419 (1962)
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : TWO,FOUR
USE CONSTANTS_P1, ONLY : H_BAR,M_E,K_B
USE FERMI_SI, ONLY : KF_SI
USE PI_ETC, ONLY : PI3
USE SCREENING_VEC, ONLY : DEBYE_VECTOR
USE EULER_CONST, ONLY : EUMAS
USE UTILITIES_1, ONLY : RS_TO_N0
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
REAL (WP), INTENT(IN) :: X,RS,T
REAL (WP) :: DGKA_PD_3D
REAL (WP) :: Y,Q_SI,KT_SI,XX,YY
REAL (WP) :: N0,KD_SI
REAL (WP) :: NUM,DEN
!
REAL (WP) :: SQRT,LOG,EXP
!
Y = X + X ! q / k_F
!
Q_SI = Y * KF_SI ! q in SI
!
N0 = RS_TO_N0('3D',RS) !
!
CALL DEBYE_VECTOR('3D',T,RS,KD_SI) !
!
KT_SI = SQRT(M_E * K_B*T / (H_BAR * H_BAR)) ! De Broglie thermal wave vector
XX = Q_SI / KD_SI !
YY = KT_SI / KD_SI !
!
NUM = TWO * XX * XX * KD_SI * KD_SI * KD_SI !
DEN = 15.0E0_WP * SQRT(PI3) * N0 !
!
DGKA_PD_3D = ENE_P_SI * NUM * LOG( FOUR * YY *EXP(- EUMAS) )& !
/ DEN ! ref. (1) eq. (2)
!
END FUNCTION DGKA_PD_3D
!
!=======================================================================
!
FUNCTION FEWA_PD_3D(X,RS)
!
! This function computes the plasmon damping gamma_q in the
! Fetter and Walecka approximation
!
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
!
!
! Output variables :
!
! * FEWA_PD_3D : plasmon damping (dimensionless)
!
! References: (1) A. L. Fetter and J. D. Walecka,
! "Quantum Theory of Many-Particle Systems",
! McGraw-Hill, ex. 9.12 p. 324
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE
USE FERMI_SI, ONLY : EF_SI
USE PI_ETC, ONLY : PI3
USE UTILITIES_1, ONLY : ALFA
!
IMPLICIT NONE
!
REAL (WP) :: X,RS,Y
REAL (WP) :: FEWA_PD_3D
REAL (WP) :: ALPHA
!
REAL (WP) :: SQRT
!
Y = X + X ! q / k_F
ALPHA = ALFA('3D') !
!
FEWA_PD_3D = EF_SI * SQRT(ALPHA * RS * PI3) * & !
(Y-ONE) * (Y-ONE) ! ref. (1) ex. (9.12)
!
END FUNCTION FEWA_PD_3D
!
!=======================================================================
!
FUNCTION JEWS_PD_3D(X,RS)
!
! This function computes the plasmon damping gamma_q in the
! Jewsbury approximation
!
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
!
!
! Output variables :
!
! * JEWS_PD_3D : plasmon damping (dimensionless)
!
! References: (1) P. Jewsbury, Aust. J. Phys. 32, 361-368 (1979)
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : HALF
!
IMPLICIT NONE
!
REAL (WP) :: X,RS,Y
REAL (WP) :: JEWS_PD_3D
REAL (WP) :: G0,G1
!
REAL (WP) :: SQRT
!
Y = X + X ! q / k_F
!
G0 = 0.033E0_WP * RS ! ref. (1) eq. (25b)
G1 = 0.15E0_WP * SQRT(RS) ! ref. (1) eq. (25a)
!
JEWS_PD_3D = HALF * (G0 + G1 * Y * Y) ! ref. (1) eq. (24)
!
END FUNCTION JEWS_PD_3D
!
!=======================================================================
!
FUNCTION LITI_PD_3D(X,TAU)
!
! This function computes the plasmon damping gamma_q in the
! Giuliani-Quinn approximation
!
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * TAU : relaxation time (used for damping) in SI
!
!
! Output variables :
!
! * LITI_PD_3D : plasmon damping (dimensionless)
!
! References: (1) G. F. Giuliani and J. J. Quinn, Phys. Rev. B 29,
! 2321 (1984)
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ONE,TWO
!
IMPLICIT NONE
!
REAL (WP) :: X,TAU,Y
REAL (WP) :: LITI_PD_3D
!
Y = X + X ! q / k_F
!
LITI_PD_3D = (ONE + Y) / (TWO + Y) * ONE / TAU ! ref. (1) eq. (2)
!
END FUNCTION LITI_PD_3D
!
!=======================================================================
!
FUNCTION MOPE_PD_3D(X,RS,T)
!
! This function computes the plasmon damping gamma_q in the
! Molinari-Peerani approximation for the Landau damping
! in a Maxwellian 3D plasma
!
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : system temperature in SI
!
!
! Output variables :
!
! * MOPE_PD_3D : plasmon damping (dimensionless)
!
! References: (1) V. G. Molinari and P. Peerani,
! Il Nuovo Cimento D 5, 527 (1985)
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : HALF
USE CONSTANTS_P1, ONLY : H_BAR,M_E,K_B
USE FERMI_SI, ONLY : KF_SI
USE PI_ETC, ONLY : SQR_PI
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
REAL (WP) :: X,RS,T,Y,U,U2,U3
REAL (WP) :: MOPE_PD_3D
REAL (WP) :: Q_SI,BETA
REAL (WP) :: NUM,DEN
!
REAL (WP) :: SQRT,EXP
!
Y = X + X ! q / k_F
!
Q_SI = Y *KF_SI ! q in SI
!
BETA = HALF *M_E / (K_B * T) ! ref. (1), after eq. (10)
!
U = ENE_P_SI / (H_BAR * Q_SI) ! omega_p / q
U2 = U * U !
U3 = U2 * U !
!
NUM = SQR_PI * SQRT(BETA * BETA * BETA) * ENE_P_SI * U3 !
DEN = H_BAR !
!
MOPE_PD_3D = NUM * EXP(- BETA * U2 - 1.5E0_WP) / DEN ! ref. (1) between (24) and (25)
!
END FUNCTION MOPE_PD_3D
!
!=======================================================================
!
FUNCTION NPSA_PD_3D(X,RS,T)
!
! This function computes the plasmon damping gamma_q in the
! Ninham-Powel-Swanson approximation
!
! References:
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : system temperature in SI
!
!
! Output variables :
!
! * NPSA_PD_3D : plasmon damping
!
! References: (1) B. W. Ninham, C. J. Powell and N. Swanson,
! Phys. Rev. 145, 209 (1966)
! H. T. Nguyen-Truong, J. Phys. Chem. C 119,
! 7883-7887 (2015)
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : ZERO,ONE,TWO,THREE,FOUR,FIVE
USE FERMI_SI, ONLY : EF_SI
USE PI_ETC, ONLY : PI
USE UTILITIES_1, ONLY : ALFA
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
REAL (WP) :: X,RS,T,Q_C,Y
REAL (WP) :: NPSA_PD_3D
REAL (WP) :: GAMMA_Q,Y2,Y4,OM0
REAL (WP) :: ALPHA
!
REAL (WP) :: SQRT,LOG
!
Y = X + X ! q / k_F
!
! plasmon cut-off in q
!
ALPHA = ALFA('3D') !
Q_C = ALPHA * SQRT(THREE / RS) ! ref. (1b) eq. (14)
!
OM0 = ALPHA * ALPHA * SQRT(THREE * RS) ! ref. (1b) eq. (14)
!
IF(Y <= Q_C) THEN !
Y2 = Y * Y !
Y4 = Y2 * Y2 !
GAMMA_Q = PI * OM0 * OM0 * OM0 * (FIVE * LOG(TWO) + ONE) *& !
Y2 / 30.0E0_WP + & !
PI * OM0 * ( 30.0E0_WP *LOG(TWO) + & !
37.0E0_WP / FOUR - & ! ref. (1b) eq. (14)
13.0E0_WP * OM0 * OM0 / & !
16.0E0_WP & !
) * Y4 ! dimensionless
!
NPSA_PD_3D = GAMMA_Q * EF_SI ! in SI
ELSE !
NPSA_PD_3D = ZERO !
END IF !
!
END FUNCTION NPSA_PD_3D
!
!=======================================================================
!
FUNCTION SGAA_PD_3D(X,RS,T,PL_DISP,SQ_TYPE,GQ_TYPE,EC_TYPE, &
IQ_TYPE)
!
! This function computes the plasmon damping gamma_q in the
! Segui-Gervasoni-Arista approximation
!
! References: (1) S. Segui, J. L. Gervasoni and N. R. Arista, Nucl. Instr.
! Meth. Phys. Res. B 408, 217-222 (2017)
!
! Input parameters:
!
! * X : dimensionless factor --> X = q / (2 * k_F)
! * RS : Wigner-Seitz radius (in units of a_0)
! * T : system temperature in SI
! * PL_DISP : method used to compute the dispersion (3D)
! * SQ_TYPE : structure factor approximation (3D)
! * GQ_TYPE : local-field correction type (3D)
! * EC_TYPE : type of correlation energy functional
! * IQ_TYPE : type of approximation for I(q)
!
!
! Output variables :
!
! * SGAA_PD_3D : plasmon damping
!
!
! Author : D. Sébilleau
!
! Last modified : 11 Jun 2020
!
!
USE REAL_NUMBERS, ONLY : HALF
USE CONSTANTS_P1, ONLY : H_BAR,M_E,E
USE FERMI_SI, ONLY : KF_SI
USE PLASMON_DISP_REAL
USE PLASMON_ENE_SI
!
IMPLICIT NONE
!
CHARACTER (LEN = 7) :: PL_DISP
CHARACTER (LEN = 6) :: EC_TYPE
CHARACTER (LEN = 4) :: PD_TYPE,GQ_TYPE
CHARACTER (LEN = 3) :: SQ_TYPE,IQ_TYPE
!
REAL (WP), INTENT(IN) :: X,RS,T
REAL (WP) :: SGAA_PD_3D
REAL (WP) :: Y,Q_SI
REAL (WP) :: RQ_SI,ENE_P_Q,OM_Q,OM_QQ,K1_SI
REAL (WP) :: NUM,DEN
!
Y = X + X ! q / k_F
!
Q_SI = Y * KF_SI !
!
! Computing the plasmon dispersion
!
CALL PLASMON_DISP_3D(X,RS,T,PL_DISP,ENE_P_Q) !
OM_Q = ENE_P_Q / H_BAR ! omega_q
!
OM_QQ = HALF * H_BAR * Q_SI * Q_SI / M_E !
!
K1_SI = M_E * (OM_Q - OM_QQ) / (H_BAR * Q_SI) !
!
NUM = M_E * E * E * ENE_P_SI * ENE_P_SI * & !
(KF_SI * KF_SI - K1_SI * K1_SI) ! ref. (1) eq. (17)
DEN = H_BAR * H_BAR * H_BAR * H_BAR * & !
Q_SI * Q_SI * Q_SI * OM_Q !
!
SGAA_PD_3D = NUM / DEN ! in SI
!
END FUNCTION SGAA_PD_3D
!
!=======================================================================
!
SUBROUTINE EXACT_DAMPING(IX,IDERIV,N_E,EN,EPSR,EPSI,EN_Q,GAMMA_Q)
!
! This subroutine computes the plasmon damping gamma_q according to
!
! Im[ epsilon ] |
! gamma_q = - _______________ |
! |
! d Re[ epsilon ]/d omega | omega=Omega_q
!
! where epsilon is the dielectric function.
!
!
! Input parameters:
!
! * IX : index of q-point
! * IDERIV : type of n_point formula used for derivation (n = IDERIV)
! * N_E : number of energy points
! * EN : energy grid in units of E_F
! * EPSR : real part of the dielectric function at q
! * EPSI : imaginary part of the dielectric function at q
! * EN_Q : plasmon energy at q in units of E_F
!
!
! Output parameters:
!
! * GAMMA_Q : plasmon damping coefficient in units of E_F
!
!
!
! Author : D. Sébilleau
!
! Last modified : 22 Oct 2020
!
!
USE DIMENSION_CODE, ONLY : NSIZE
USE REAL_NUMBERS, ONLY : ONE
USE DERIVATION
USE INTERPOLATION, ONLY : INTERP_NR,SPLINE,SPLINT
USE OUTFILES, ONLY : FN
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: IX,IDERIV,N_E
!
REAL (WP), INTENT(IN) :: EN(NSIZE)
REAL (WP), INTENT(IN) :: EPSR(NSIZE),EPSI(NSIZE)
REAL (WP), INTENT(IN) :: EN_Q
!
REAL (WP), INTENT(OUT):: GAMMA_Q
!
REAL (WP) :: H
REAL (WP) :: DEPSR(NSIZE)
REAL (WP) :: DEPSR_Q,EPSI_Q
!
H = EN(2) - EN(1) ! step for energy derivation
!
! Derivation of EPSR(N) using a n-point formula --> result in DEPSR(N)
!
CALL DERIV_1(EPSR,N_E,IDERIV,H,DEPSR) !
!
! Cubic spline interpolation of DEPSR(N) and EPSI(N) at E = EN_Q_
!
CALL INTERP_NR(6,EN,DEPSR,N_E,EN_Q,DEPSR_Q) !
CALL INTERP_NR(6,EN,EPSI,N_E,EN_Q,EPSI_Q) !
!
GAMMA_Q = - EPSI_Q / DEPSR_Q ! units of E_F
!
END SUBROUTINE EXACT_DAMPING
!
END MODULE PLASMON_DAMPING