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Multipair excitations in the interacting-electron gas at metallic densities are quantitatively investi-

gated at large momentum transfers with use of the microscopic Green-Neilson-Szymanski (GNS)
theory. The effect of single-pair and multipair excitations on the dynamic response function P(q, co)

are contrasted, and the relative strengths of these excitations are compared. It is shown that the
multiple-peak structures in the dynamic structure factor S(q, cu) as calculated in the GNS theory are
associated with pure multipair effects. The essential role multipair effects play in determining the
high-energy-transfer tail of S(q, co) is stressed, and the way this affects the frequency moment sum
rules is examined. Other properties of these sum rules, when they are generated within approximate
but conserving theories, are discussed.

I. INTRODUCTION

Multipair fluctuations of an interacting-fermion system
consist of the simultaneous excitation of two or more
quasiparticles out of the ground state. Some twenty five
years ago Miller, Nozieres, and Pines emphasized the im-
portance of multipair excitations in determining the
dynamic structure factor S(q, co) of He at very low tem-
peratures. If one neglects the possibility of two or more
quasiparticles being excited out of the condensate, one can
then use the f-sum rule to recover the well-known Feyn-
man result for the single-phonon spectrum
toe =q /2mS(q}, where S(q) is the static structure factor.
By adopting a phenomenological treatment of the mul-
tipair excitations it is possible to recover the experimental
dispersion curve for toe. Recently Manousakis, Pines, and
Usmani used the constraints imposed by the f-sum rule
and the higher moment frequency sum rules to calculate
the multipair contributions.

In the case of the interacting-electron gas at metallic
densities, the well-known breakdown of the random-phase
approximation (RPA} at metallic densities is not by itself
evidence of the importance of dynamic multipair excita-
tions for this system. The reason is the following. The
primary cause of the breakdown of the RPA is that it
fails to take into account the effect of electron-electron
correlations on the Coulomb interaction V(q) at short dis-
tances. A static local field correction g(q) can be con-
structed to approximately include the effect of these corre-
lations. Provided g(q) is real and static, no dynamic
multipair effects can be present. This is most easily
demonstrated by reformulating the theory as an RPA
theory with an effective interaction between electrons
V ff(q) = V(q)[ 1 —g (q) j. It is only when the local field is

permitted to develop an imaginary component, or alterna-
tively, when it becomes a dynamic function of the energy
transfer co, that dynamic multipair effects appear in the
theory.

Iwamoto, Krotscheck, and Pines used the results of the
Monte Carlo calculations of Ceperley and Alder to
graphically demonstrate this point. Recall the expression
for the proper density-density response function

(o)
Xsc( )

X (q~co) (1)
1+V(q)g(q)X' '(q, co)

where X' '(q, co) is the response function for the nonin-
teracting system, the Lindhard function. The dynamic
structure factor is related to X"(q,co) through the expres-
sion

1 ImX"(q, to)S q, co

~

1 —V(q)X"(q, co)
~

Iwamoto, Krotscheck, and Pines constructed a static local
field g(q) =GMc(q) to reproduce the structure factor
SMC(q) as calculated by Ceperley and Alder for momen-
tum transfers q )kF /2. For smaller values of the
momentum transfer, the numerical values from the Monte
Carlo (MC) calculation have some uncertainty associated
with them, but for this case there is an expression which
can be used for g(q) which is known to be exact in the
long-wavelength limit. Substituting the resultant static
and dynamic structure factors in the third-frequency-
moment sum rule, Iwamoto, Krotscheck, and Pines found
significant violations throughout the metallic density
range. They then pointed out that an alternative local
field G3(q) can be constructed using the same Monte Car-
lo data. We recall that the third-moment sum rule can be
written (units are such that A'=m = 1)
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4 2

f S(q, co)co dco=nq +q (Ek;„)+ [1—I(q)]

where n is the average particle density,

I(q) =—g(q k) [S(k)—S(
~ q —k

~
)],

(3)

(4)

where the expectation value (Ek;„)0here is for the nonin-
teracting electron gas. A comparison of Eqs. (3) and (4)
reveals that the third-frequency-moment sum rule will be
satisfied provided

g (q) =G3(q) =I (q) —
z ( (Ek. ~ —~Ev ~o) .2q

Ci?p

Evaluating G3(q) Iwamoto, Krotscheck, and Pines
found that the functional behavior of GMC(q) and G3(q)
is quite different (see Fig. 1). They concluded that the
difference between GMC(q), which was chosen to yield
agreement with SMC(q), and G3(q), which was construct-
ed to recover the third-frequency-moment sum rule, is an
indication of the importance of dynamic multipair excita-
tions for the electron gas at metallic densities. They
reasoned that multipair excitations generally involve signi-
ficantly greater amounts of energy transfer than either the

0

q/ kF

FIG. 1. The local fields G3(q) and GMC{q) for density r, =2
(Ref. 6).

and (E„;„)is the expectation value of the kinetic energy
in the interacting system. The sum rule can be reex-
pressed using Eq. (1) as

4 2

f S(q, co)co'dco=nq +q (E„;„)o+ [1—g(q)]
0 8 2

single-pair or collective plasmon excitations. As a conse-
quence, because of the cu weighting appearing in the in-
tegrand of the third-moment sum rule, the effect of mul-
tipair excitations on the third-moment sum rule is rela-
tively much greater than their effect on the static struc-
ture factor S(q).

In this paper we use the microscopic theory of the
interacting-electron gas developed by Green, Neilson, and
Szymanski (GNS) to quantitatively investigate these and
related ideas. Since the GNS theory is of the Goldstone
perturbation type, it is possible to explicitly identify the
separate single-pair, collective mode (plasmon), and mul-
tipair terms contributing to the perturbation expansion.
We are therefore able, for example, to look at the relative
importance of these effects in the self-energy insertions af-
fecting the response function. In the light of our previous
discussion, it is also of interest to examine the effect of
the different excitation modes on the frequency moment
sum rules. A brief report of some of this work has al-
ready appeared.

The plan of the paper is as follows. In Sec. II we recall
briefly some of the relevant features of the GNS theory.
In Sec. III the three excitation modes in the Goldstone di-
agram language of GNS are defined, and in Sec. IV the
separate single-pair and multipair contributions to the
dynamic structure factor S(q, co) for large momentum
transfers q &&kF are calculated. Section V discusses in
detail the frequency moment sum rules, and Sec. VI con-
tains some concluding remarks.

II. MICROSCOPIC THEORY

The GNS theory was constructed out of an infinite sub-
set of perturbation contributions to the ground-state
correlation energy @[G], treated as a functional of the
self-consistent single-particle propagator G. Provided
4[G] satisfies certain straightforward symmetry require-
ments and provided also that the self-energies and the po-
larization function are generated by functionally differen-
tiating @[G],then the theory satisfies the requirements of
Baym and Kadanoff' for a conserving theory. What this
means is that the relationship between the approximate
quantities such as density fluctuations and currents in the
theory precisely mirrors the relationship between the cor-
responding exact quantities. For example, the equation of
continuity within the theory is exactly satisfied even
though the density and current are themselves approxi-
mate.

The terms in the GNS theory satisfy these symmetry
requirements. They were selected in such a way that the
theory is exact for metallic densities in the limits of both
small and large momentum transfer. The constraints of
exactly satisfying all the conservation relations should
then maintain the accuracy of the theory in the
momentum-transfer range lying between these two limits.

It has been pointed out by Goodman and Sjolander"
that the third-frequency-moment sum rule is a conse-
quence of local conservation rather than global conserva-
tion, and this means that it is not obvious that a theory
satisfying the above criteria must necessarily satisfy this
sum rule. Much of Sec. V is devoted to a proof that in
fact all theories of the conserving Baym-Kadanoff type do
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exactly satisfy the third-frequency-moment sum rule.
We now very briefly outline the steps involved in calcu-

lating the dynamic structure factor S(q, co) in the GNS
theory. S(q, co) is related to X"(q,co) through Eq. (2).

To calculate 7" we first express the exact ground-state
energy @[G] as a function of the fully dressed one-body
propagator G. Our primary approximation enters at the
next step where we retain only a subset of the terms con-
tributing to C&[G]. The terms retained are shown in Fig.
2. They include all the particle-particle and hole-hole
multiple scattering "ladder" diagrams which have been
shown to dominate correlations at large momentum
transfers. They also include the particle-hole polarization
"ring" diagrams which dominate screening correlations at
very small momentum transfers. The key property which
ensures conservation is that every single-particle propaga-
tor G in these terms is equivalent to every other G. The
energy functional is then invariant under space-time
transformations and this ensures that the conservation
laws are exactly satisfied.

The single-particle self-energy X[G] in this theory must
be obtained by functionally differentiating C&[G] with
respect to G. The corresponding one-body equation of
motion is then strictly conserving.

The proper polarization function P"(q,co) is given by
the trace of the proper electron-hole polarization propaga-
tor A"[G] over its single-particle label. A"[G] is the
solution of an integral equation which contains in its
kernel a dynamical two-body interaction ="[G]
=i(5XI5G)—V. This interaction is itself a functional of
the self-consistent single-particle propagator G. In our
theory, multi-pair contributions to A"[G] involving three
or more particle excitations can always be broken up into

factors involving single-particle propagators G and two-
body effective interactions ="[G].

In the next section we specify what we mean by "single
pair" and "multipair" in the microscopic language of the
GNS theory. We are then in a position to investigate the
relative importance of single-pair and multipair effects in
the self ene-rgy, particle-hole uertex corrections, and t
matrix contributions to the dynamic structure factor.

III. SINGLE- AND MULTIPARTICLE EFFECTS

In the microscopic and explicitly time-dependent Gold-
stone perturbative formalism, multipair effects can easily
be identified diagrammatically as terms in which two or
more particle-hole excitations exist at the same instant of
time. Single-pair corrections to the RPA then operate
under the stringent restriction that at no time can more
than one particle-hole pair be excited. The explicit time
dependence in this diagrammatic representation makes it
easy to recognize when a term contains multipair contri-
butions.

The only single-pair corrections to the RPA within the
GNS theory are shown in Fig. 3. The two propagators are
each fully renormalized with static Hartree-Fock self-
energy insertions. The particle-hole vertex corrections in-
volve only unscreened Coulomb interactions. These are
summed to infinite order. We can write the proper polari-
zation function arising from all these single-particle ef-
fects as

&sp(q ~)= x"'(q, ~)
I+ &(q)gHF(q, co)X' '(q, ~)

1

2

+ ~ ~ ~

1+
4 + 6

+ e ~ ~

1

2
+—
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6 + ~ ~ ~

(b)

FIG. 2. Contributions to the ground-state functional N[G]
within the present model, with accompanying weighting factors.
The horizontal dashed lines are bare Coulomb interactions, the
solid lines are self-consistent single-particle propagators.

FIG. 3. Complete set of single-pair contributions to the prop-
er polarization function p"(q, co) within the CxNS theory (a).
The particle-hole vertex corrections are shown explicitly, while
the double lines represent single-particle propagators renormal-
ized with Hartree-Pock self-energies [see (b)].
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The Hartree-Fock local field gHF(q, co) has been calcu-
lated to infinite order in the bare Coulomb interaction by
Dharma-Wardana and Taylor. '

All terms in the GNS set contributing to the proper po-
larization function which do not appear in Fig. 3 are mul-
tipair. These fall into three main categories. First we
have self ene-rgy effects. We recall the complete GNS set
of self-energy insertions X(p,p ), which includes both
single-pair and multipair contributions, consists of the
RPA self-energies together with the self-energies associat-
ed with t-matrix ladders of unscreened Coulomb interac-
tions (see Fig. 4), plus the corresponding exchange terms.
The presence of any self-energy insertion beyond the static
Hartree-Fock approximation makes the term multipair.
The second category consists of the particle-hole vertex
corrections, which incorporates all those terms involving
the scattering of the particle and the hole associated with
a single polarization bubble. In this case, it is the screen-
ing of the interaction which leads to multipair effects (see
Fig. 5). The third category are the t matrix -type scatter-
ing terms between two adjacent particle-hole polarization
bubbles (see Fig. 6).

It can be seen by inspection that the t-matrix terms
have no single-pair components, but the GNS self-energies
and particle-hole vertex correction terms contain a mix-
ture of single-pair and multipair effects. By comparing
the single-pair contributions of Fig. 3 with the total con-
tributions, it is possible to obtain a quantitative measure
of the multipair contributions.

(a)

(b)

ii Q i( Q

SC

A. Self-energies

Considering first the self-energies, we recall that the
fully renormalized single-particle propagator G (p,p )

with GNS self-energy insertions X(p,p ) is given by the
solution of the Dyson equation

V

(c)

+ 'I~ il

G(p,p )=G' '(p,p )[l+&(p,p )G(p,p )],
where G' '(p, p )=(p p /2+—ig) ' is the free-particle
propagator. Using the renormalized propagators we can
construct the corresponding proper polarization function

FIG. 4. Self-energy function for the CxNS model. This in-
cludes both single-pair and multipair contributions. All the
propagators are self-consistently renormalized. The hatched
box is the dynamic t-matrix interaction [see (b)] and the wavy
horizontal line is the dynamic RPA screened interaction V" [see
(c)].

dk'
(q, co) =2+I G(k, k )G(

I k+q I, k +co)
27Tl

(8)

=2+I de"A ~g+q~ (ro")I dpi'Ak(co')
co —(co —cg) —iri )

where Ez is the Fermi energy, and Ak(co) is the spectral
density for the propagator G (k, co),

~k(ai) =—
I

G « ~a)
I

'
I
lm&« ~)

I

Equation (8) includes the total contribution to the prop-
er polarization function from RPA [i.e., X' )(q, co)] plus all
self-energy insertions, hence the superscript label "SE."
As discussed above, the self-energies contain a mixture of

single-pair and multipair effects.
We can also write down the corresponding spectral den-

sity expression when only Hartree-Fock self-energies are
included. The corrections to the RPA in this case are
purely single-pair. Because the self-energy insertions are
static, we can in fact bypass the more elaborate spectral
density formalism and immediately express the single-pair
contribution to X (q, co) from RPA plus self-energy inser-
tions as
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2[sHF(
I
~+q I

) EHF(k)]
Xsp(q, co) =2

2
k( k ) i lEHF( I

&+q
I

) —eHF(k) —i'q]
~k+q) )k~

where eHF(k)=k /2+XHF(k). The additional subscript
"SP" indicates that only single-pair contributions have
been included.

We can now define the net multipair contribution to
X (q, co) from self-energy insertions as the difference

XMp(q, ~)=X (q,~)—Xsp(q, co) . (12)

B. Vertex corrections

The vertex correction terms (superscript VC) are associ-
ated with particle-hole scattering within a single polariza-
tion bubble. If the particle-hole interactions are all un-
screened the contribution is single-pair because only one
particle-hole excitation is involved. However, if any of
the interactions are screened the contribution becomes
multipair because of the presence of the additional
particle-hole pair excitations in the screened interaction.

In practice one cannot sum the vertex corrections to in-
finite order if one is using the dynamically screened RPA
interaction VRP&(k, k ). This is because the iterative
ladder summation technique cannot be applied for
dynamic interactions. When the momentum transfer is
large compared with the plasmon cutoff q„anorder-by-
order comparison of terms reveals that within the single-
particle excitation region there is little difference in results
between using the dynamic VRP~(k, k ) and using the
static bare Coulomb interaction V(k). This is due to
kinematic constraints which for q »q, keep all the
dynamically screened interactions far from the plasmon
pole which exists for k (q, at k -cop. This means then
that within the single-particle excitation region the mul-
tipair vertex correction contributions constitute only small
corrections to the single-pair contribution.

We may therefore include the effect of multipair
particle-hole vertex corrections as a small additional term
in the local-field factor g (q, co),

FIG. 5. Particle-hole vertex correction contributions linear in
the dynamic two-body interaction =". (a) represents the single-
pair term and (b) represents the multipair term.

C. T matrix

This category incorporates ladder-type multiple scatter-
ing terms between different particle-hole polarization bub-
bles. In the GNS theory there is a restriction that the
multiple scattering occurs between only one pair of adja-
cent polarization bubbles at any instant of time. These
terms necessarily involve the excitation of at least two
particle-hole pairs, and so are purely multipair in nature.

Figure 6 shows representative terms for the t-matrix
category in the GNS theory. The corresponding exchange
terms are not explicitly shown. Up to second order in the
scattering, the interaction is VRP~(q co) (wavy lines). For
higher orders it is the bare Coulomb interaction V(q)

g(q ~)=gHF(q ~)+5gMp(q, ~) . (13)

The function 5gMp(q co) is accurately determined by the
vertex correction involving a single scattering of the parti-
cle and hole via VRpA (see Fig. 5). Since 5gMP(q, co) is
small, we may expand Eq. (1) in powers of it. The contri-
bution to 7" linear 5g Mp is given by

X' '(q, co) V( )qg5M'(q, co) X('(q, co)
XMp(q ~)

t 1+«q)gHF(q, ~»"'(q, ~)l'

This construction continues to work well in the high-co re-
gion lying beyond the single-particle excitation range: it
can be shown that for large inomentum transfers the total
vertex correction at high m is accurately given by the term
of first order in the dynamically screened interaction

13+RPA.

FICx. 6. Representative terms in the t-matrix category which
are linear in the dynamic two-body interaction =". These terms
are purely multipair.
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(dotted lines). The diagrams are time ordered and the
flow of time is vertically upwards. The dots represent the
external vertices. All possible time orderings of the dots
relative to the kernel of each diagram must be taken. We
write the total contribution from these t-matrix terms as
X'(q, ~).

IV. RESULTS

Figure 3 represents all the terms contributing to
7"(q,co) which belong either to the RPA itself or to the
single-pair corrections to the RPA. Figure 7 shows for a
range of metallic densities the resultant Ssp(q, co). This is
the total single-pair plus collective mode contribution to
S(q, co). Also shown are the corresponding RPA results,

Sap~(q cl)). The central peak of Ssp(q, co) is at a lower
value of co than the peak of SRp~(q, co). This occurs be-
cause the RPA overestimates the potential energy of each
particle, the Hartree-Fock exchange correlation corrects
for this, and the result is a lower average excitation ener-

gy. There are no dissipative effects in Ssp(q, co) and so the
curve has a sharp high-energy cutoff which is qualitative-
ly similar to SRpA(q, cl)). However, dispersive effects asso-
ciated with Hartree-Fock self-energies cause the actual
cutoff points to shift. These same dispersive effects also
broaden the overall peak of Ssp(q, co) compared to
SRPA(q, ~).

In Fig. 8 we show the multipair contributions from
self en-eries gp(q, co) from particle-hole Uertex correc
tions X~p(q, ci)), and from t ma-trix multiple scattering
X (q, co). The single-particle excitation region is indicated
on the energy scale. For these momentum transfers self-
energies and t-matrix terms are both significant in the
single-particle excitation region, while the particle-hole
vertex corrections are small. However, outside the single-
particle excitation region, all three categories make impor-
tant contributions to high-energy tails. The tails arise
from dissipative processes which can only occur when
multipair excitations are present. The high-energy tails of
the self-energies and the particle-hole vertex corrections
both fall off as (cop/Sar )co . There is leading order
cancellation between the tails of these two terms resulting
in a net (co~/24m )q co ~ falloff. A similar pattern can
be found in the t-matrix terms, which fall off as
—(co&/24m )q co ~ . Bringing this tail together with the
combined self-energy plus particle-hole vertex correction
tail leads to a final net falloff of (23co~/240m )q co

From a practical point of view these cancellations are vi-
tal for the satisfaction of the third-moment sum rule. By
inspection this sum rule will actually diverge unless the
high-energy tail falls off faster than co

In Fig. 9 we compare the total single-pair and multipair
contributions to the dynamic structure factor, Ssp(q, co)

and SMP (q, co ), respectively. Ssp (q, co ) is the familiar
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FIG. 7. Dynamic structure factor from all single-pair contributions, Ssp(q, co) (solid line). Also shown is SRpA(q, co) (dashed line).
Momentum transfer q here is in units of kF. (a) Density, r, =1.87. (b) Density, r, =3.22. (c) Density, r, =4.
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FICx. 8. Multipair contributions to g"(q,~}. Dot-dashed line is the self-energy contribution g (q, ~}. Dashed line is the particle-
hole vertex correction contribution PMp(q, ~). The solid line is the t-matrix contribution P (q, co). The single-particle excitation range
is shown emphasized on the energy scale. (a) Density, r, =1.87. (b) Density, r, =3.22. (c) Density, r, =4.

smooth one-peak curve which has a sharp cutoff at the
boundary of the single-particle excitation region. We see
that while SMp(q, cII) is smaller than Ssp(q, co) within the
single-particle excitation region, it is by no means negligi-
ble even for densities as high as r, =1.87. The rich
multiple-peak structure in SMp(q, co) has a dramatic effect
on the total S (q, m) in the single-particle excitation region.
Outside this region, only SMP(q, co) is nonzero, so that the
high-energy tail of the total S(q, co) also falls off as
(23' /240~ )q cII

V. SUM RULES

In the preceding sections we have dissected the different
terms contributing to the dynamic structure factor
S(q, co). We noted the vital role played by multipair ef-
fects in ensuring that the third-frequency-moment sum
rule converges [Eq. (3)]. Convergence alone, of course,
does not ensure that the sum rule is satisfied.

It is easy to show that any conserving formalism of the
Baym-Kadanoff type must satisfy the f-sum rule,

S q, co codes=nq /2 . (15)

This follows from the well-known link between this sum

QQ

S(k) =—f des S(k,co) .
n 0

(17)

For the f-sum rule this ambiguity does not arise because
the right-hand side involves only the simple and exactly-
known term nq /2, but in Eq. (3) it is not obvious a priori
which of the two S(k) should be used [it is only in the ex-
act diagrammatic theory that Eqs. (16) and (17) become
equivalent' ].

In this section we demonstrate for the first time that

rule and particle number conservation. However, it is not
immediately clear that such theories must also satisfy the
third-frequency-moment sum rule. First of all this sum
rule is related only to local conservation in transient times
following a collision" and not to any overall conservation
requirement. Second, there is an initial ambiguity in any
approximate theory over which static structure factor
S(k) to use on the right-hand side of Eq. (3). One can ei-
ther obtain S(k) by Fourier transforming the instantane-
ous pair correlation function g (r),

S(k)—l=n fd r[g(r) —1]e'"', (16)

or one can take the zero-time-interval Fourier transform
of the dynamic structure factor
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(18)

We use the implicit summation convention for repeated
indices unless they are enclosed in parentheses. X&p is the
self-energy, I~p the unit matrix, and the nonlocal external
perturbation we use here is

ap 4a+ A(a) (a)p ~

where P couples to the density and A couples to the
current. The momentum operator is defined as

P p (V Vp)12i .—— — (20)

Subtracting its adjoint from Eq. (18) and taking the
limit @~A,+, we find that the X~pGp„ terms cancel be-
cause of the symmetry properties required by the Baym-
Kadanoff formalism. The terms involving the local po-

any conserving theory of the Baym-Kadanoff type does in
fact exactly satisfy the third-frequency-moment sum rule.
Further, we show that the S(k) which must be used on
the right-hand side of the same rule is determined from
Eq. (16), with the g (r) calculated within the theory.

The proof uses the symmetry properties of the equation
of motion for the one-body propagator G,

1
i +—V(g) G(g)„——XgpGp„+(I pU p)IgpG „.

Bt~g) 2

We identify the density p and the current J,

«= ' (u.+)

J~= —P(~~+)G(~k+)
(22)

Taking variations of Eq. (21) with respect to P„and A„,
we obtain in the limit as P and A approach zero,

pX($)„+V(g) X(g)„——0,J
Bf~g)

pJ JJ
&(~)~+V(~) &(~)~= —C(~)V(~X(i)g .

~t(k)

(23)

Here X~ is the density-density correlation function and~JJg ~z is the current-current correlation function. The other
two correlation functions relating density and current
obey the relation X~~z ——X&~~. This relation follows from
the symmetries required by the Baym-Kadanoff frame-
work. Using this property with Eqs. (23) and Fourier
transforming, we obtain the relation

tential P also cancel, leaving

a
(u.+) +' ~~~ (u.+) ~u, +)

at&a~

= —iV(g) (A(g)G ~~+)) (21)
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X JJ(,~) ~

Xpp(q, )= q n+q
CO CO

We demonstrate in the Appendix that

so that in the large-co limit, Eq. (24) becomes
(24)

2 2

lim Xpp(q, cu) = n + M3(q)+ . (26)

2

lim q X (q, co).q= M3(q)+
CO~ oo CO

(25) The Kramers-Kronig dispersion relations imply that

pp( ) 1 ~ J
dc' co ImX (q co )

&2
CO —CO

I I

co'I~PP q co' co' Im+P& q co' +O co
0 0

CO

(27)

By combining Eqs. (26) and (27) we recover the f-sum rule
)t

co' —Imp~~ q, co'
2

and the third-frequency-moment sum rule

co' —Img«q, co'
~ dCO q M3(q)

2

In the Appendix we evaluate the function M3(q), and confirm that

4
1 d k

M3(q) = +2nq (Ek;„)+4rre n 1 ——f (q k) [S(k) —S(
~ q —k

~
)]4 n (2~)3

(28)

(29)

(30)

where the S(k) here must be taken from the Fourier
transform of the calculated model pair correlation func-
tion [see Eq. (16)].

We conclude that both the f-sum rule and the third-
frequency-moment sum rule are exactly satisfied by an ap-
proximate theory which satisfies the Baym-Kadanoff con-
serving requirement. In the GNS theory this means that
the delicate cancellations we have already noted among
the different multipair terms in the high-co tail do not
merely enforce convergence on the third-frequency-
moment integral, but actually ensure that the sum rule it-
self is exactly maintained when all the dynamic multipair
corrections to the RPA are incorporated.

VI. SUMMARY AND CONCLUSIONS

The main points to emerge from this paper are as fol-
lows.

(i) That multipair effects significantly affect the
dynamic response function even at the highest metallic
densities.

(ii) Two very important effects which are purely mul-
tipair are the multiple peaks in the dynamic structure fac-
tor and the asymptotic falloff of the tail of S(q, co) in the

I

high-co region outside the single-particle excitation range.
(iii) The form of the asymptotic falloff of the high-co

tails is determined by delicate cancellations among quite
different terms: self-energy, particle-hole vertex correc-
tion, and t-matrix. The third-frequency-moment sum rule
is particularly sensitive to the tails. Unless a theory
correctly takes into account these cancellations, it is most
unlikely that it will satisfy the sum rule.
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APPENDIX

In this appendix we determine the form of the function
M3(q) appearing in Eq. (29). Multiplying Eq. (18) by the
momentum operator P~„,and taking the limit p~A. + we
obtain

l + '") (u.+) (A) +) (k3.+) '( (~)~(~) (u+) (~) (~) (AA+) (kA+)Bt(g)

(~~+)G(u. +) + (u.+) (~» p(~+) (3)~ 8(&+)

Varying Eq. (Al) with respect to Az, and letting A and P approach zero, we are left with

(A 1)
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~ ~ p JJ+ (~) (u.+ ) (~)~ ' (~~+ ) (~)p p(~+ ) (~)p p(x+ )t(x) oA„ (A2)

Let us now examine the right-hand side of Eq. (A2). We first split the self-energy X p into its Hartree component X p
and its correlation component

X p ——X~p+ X"p

X p Ip ——Vy( iG— +),
~ap Gp'a' Va'(a)(&Ga'p'G(a)p happ', pp' ~

(A3)

where g~ pp is the two-body effective interaction appearing in N[G]. The contribution of X p on the right-hand side of
Eq. (A2) can be written

5 6G ~G(~~+ )

(ax+ )( ~~» p(x+ ) (~)p p(x+) ' V(~) V(~)r ' G(ax+ )
+ ' +

5Aq 6Aq

pJ=n V(~)V (A4)

where we have used the property that V(~ ) V( ~ )&
is an odd function of y .

Returning to the complete expression for the right-hand side of Eq. (A2), the remaining term which has to be evaluat-

ed is

(Ak+) t~)p p(l+) (~)p p(A+) ~ (Ak+) (~)" (A+)k' p(A+) (~)& ~&& pp p'A. '+
uAq

=i(V(g) V(g)g ) [( iG ~—+ G(g)g)/gag pp'( —&G ~,+ Gg'g )] .
SA„

(A5)

Noting that eventually we shall Fourier transform Eq. (A2) and take its high-frequency limit, we can simplify the dis-

cussion at this point by introducing an approximation which becomes exact when the high-frequency limit is taken:

SA„SG„. (» ) ~(~ ) ' ~' SG„. (A6)

The expression in Eq. (A5) can then be written

i(V(z) V(x)z )P&„+)I [(—&'Gp& +)G& q+) )G(x)g+( —iG(q +)G(q)g)Gp(z+) ]O'Pg pp'( —iGpx + Gx'g )

+( —iGp(q )G(g)g)ggg pp[( iGp( )G—
( )~, )Gg( +( iG~,

(
)G—(„)g)Gp~, ]I . (AT)

We have again anticipated taking the limit co~ oo by neglecting the derivative 5$ /56, which becomes negligible in this
limit.

By defining

Fgp =&Fr pp( —'
p

and using the properties
~JJ~ "=P(-.)P(„+F(4»

pJ 8
r(n»pp

Bt(~)

(A8)

(A9)

we may now use Eq. (A2) and the results expressed in Eqs. (A4) and (A7) to obtain an expression for the longitudinal

part of the current-current correlation function:

L JJ
+~~ =~(~)~(~):+(~~ )

p~ . 2 ~ ppi X(z)q —iV(x).P(q——q+)V(x) P(qq+)V(q) P( + P(g„)+&nV(g) V(g)), Ir(q)
~t(A, )

~~ (g)

—iV(A) 1(V(A)V(A)k')V(g) P, +)[(Gp( +)G( g+) (&)g+ (g +)G(9)gGp(g+) Fgp~

++gp' (A)(Gp( +)G( g, '+ A, g + g( +) (q)g p'g'+

(A 10)

(A 1 1)

We note that, for a uniform system, F&p z is a function of (g —A. ') and (A,
' —f3) only. Adopting the abbreviated notation

p =(p,po) and taking the Fourier transform of Eq. (Al 1), we obtain
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2

~q.P~(q, co) q=coZ (q, co)= —2i f 4G(p)6(p+q)
p' —(p+q)'

(2m) 2

(+)'—'
+nq V(q)AX~~(q, cu)

2

—2f ~ f 4 q kV(k)I[6(p)6(p+k)6(p+k+q)q (p+k+q/2)
d4p d4k

(2n. ) (2m. )

+6(p)6(p+k)6(p —q)q (p —q/2)]F(p, k)

—[G(p)6(p +k) G(p +k —q)q (p+ k —q/2)

+6(p )G(p —q)G(p +k —q)q (p —q/2)]F(p, k —q) I .

In the limit of high frequencies, Eq. (A12) becomes

lim coq P (q, co) q=2 f (q.p+q /2) +nq V(q)co 2(2~) i CO CO

(A12)

+2 q kV(k) F(p, k)q (k+q)
(2m) i (2n. ) i

6(p)6(p+k —q) Fp, k —qqk (A13)

where we have used the properties

hm co 6(p)6 (p +q) =6 (p) —6 (p +q) (A14)

Hellmann integral expression over the coupling strength
Zo

and EgPIT Z V k Sz k —1
1 'dZ d k

(2~)
(A17)

lim coG(p)6(p +k)G(p +k +q)

= 6(p}[6(p+k)—6(p +k +q)], (A15)

with co =q'.
We note that

f —2f p G (p)G(p +k)F(p, k) =S(k)
n 2n i (2n)4i.

(A16)

can be identified with the static structure factor which
determines the correlation energy E„in the Feynman-

Sz(k) must be taken from the Fourier transform of the
pair correlation function g(r) calculated directly from
N[G], and, as we have already noted, is not equal to the
zero-time Fourier transform of the dynamic structure fac-
tor within the same conserving approximation. '

Using Eq. (A16) and recalling that

d'dP G IP o0+
(A18)

27Tl

is the occupation number for the interacting system, Eq.
(A13) simplifies to

lim coq X (q, co}.q= —f +3q (q p) nz+4nen.
d k k4ne S(k) S( ~q —k~ )—n qk

(2m )' k' ~ co
q-k — q k (A19)

All terms on the right side of Eq. (A19) fall off as co . Thus we can finally identify the function M3(q) which ap-
pears in Eqs. (25) and (26):

4
1 d kM3(q)= +q n(p )+4me n 1 ——f 3

(q.k) [S(k)—S(
~ q —k

~
)]4 n (2m)'

where the expectation value (p ) is obtained by averaging over the interacting Fermi sea.

(A20)
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