subroutine cart2int(cart,qint) implicit none ! This version merges both coordinate transformation routines into ! one. JTmod's sscales(2:3) are ignored. ! This is the first version to be compatible with one of my proper 6D fits ! Time-stamp: <2024-10-22 13:52:59 dwilliams> ! Input (cartesian, in Angström) ! cart(:,1): N ! cart(:,1+i): Hi ! Output ! qint(i): order defined in JTmod. ! Internal Variables ! no(1:3): NO distances 1-3 ! pat_in: temporary coordinates ! axis: main axis of NO3 include 'nnparams.incl' include 'JTmod.incl' real*8 cart(3,4),qint(maxnin) real*8 no(3), r1, r2, r3 real*8 v1(3), v2(3), v3(3) real*8 n1(3), n2(3), n3(3), tr(3) real*8 ortho(3) real*8 pat_in(maxnin) logical ignore_umbrella,dbg_umbrella logical dbg_distances !.. Debugging parameters !.. set umbrella to 0 parameter (ignore_umbrella=.false.) ! parameter (ignore_umbrella=.true.) !.. break if umbrella is not 0 parameter (dbg_umbrella=.false.) ! parameter (dbg_umbrella=.true.) !.. break for tiny distances parameter (dbg_distances=.false.) ! parameter (dbg_distances=.true.) integer k !.. get N-O vectors and distances: do k=1,3 v1(k)=cart(k,2)-cart(k,1) v2(k)=cart(k,3)-cart(k,1) v3(k)=cart(k,4)-cart(k,1) enddo no(1)=norm(v1,3) no(2)=norm(v2,3) no(3)=norm(v3,3) !.. temporarily store displacements do k=1,3 pat_in(k)=no(k)-offsets(1) enddo do k=1,3 v1(k)=v1(k)/no(1) v2(k)=v2(k)/no(2) v3(k)=v3(k)/no(3) enddo !.. compute three normal vectors for the ONO planes: call xprod(n1,v1,v2) call xprod(n2,v2,v3) call xprod(n3,v3,v1) do k=1,3 tr(k)=(n1(k)+n2(k)+n3(k))/3.d0 enddo r1=norm(tr,3) do k=1,3 tr(k)=tr(k)/r1 enddo ! rotate trisector call rot_trisec(tr,v1,v2,v3) !.. determine trisector angle: if (ignore_umbrella) then pat_in(7)=0.0d0 else pat_in(7)=pi/2.0d0 - acos(scalar(v1,tr,3)) pat_in(7)=sign(pat_in(7),cart(1,2)) endif !.. molecule now lies in yz plane, compute projected ONO angles: v1(1)=0.d0 v2(1)=0.d0 v3(1)=0.d0 r1=norm(v1,3) r2=norm(v2,3) r3=norm(v3,3) do k=2,3 v1(k)=v1(k)/r1 v2(k)=v2(k)/r2 v3(k)=v3(k)/r3 enddo ! make orthogonal vector to v3 ortho(1)=0.0d0 ortho(2)=v3(3) ortho(3)=-v3(2) !.. projected ONO angles in radians pat_in(4)=get_ang(v2,v3,ortho) pat_in(5)=get_ang(v1,v3,ortho) pat_in(6)=dabs(pat_in(5)-pat_in(4)) !.. account for rotational order of atoms if (pat_in(4).le.pat_in(5)) then pat_in(5)=2*pi-pat_in(4)-pat_in(6) else pat_in(4)=2*pi-pat_in(5)-pat_in(6) endif pat_in(4)=rad2deg*pat_in(4)-offsets(2) pat_in(5)=rad2deg*pat_in(5)-offsets(2) pat_in(6)=rad2deg*pat_in(6)-offsets(2) pat_in(7)=rad2deg*pat_in(7) call genANN_ctrans(pat_in) qint(:)=pat_in(:) contains !------------------------------------------------------------------- ! compute vector product n1 of vectors v1 x v2 subroutine xprod(n1,v1,v2) implicit none real*8 n1(3), v1(3), v2(3) n1(1) = v1(2)*v2(3) - v1(3)*v2(2) n1(2) = v1(3)*v2(1) - v1(1)*v2(3) n1(3) = v1(1)*v2(2) - v1(2)*v2(1) end subroutine !------------------------------------------------------------------- ! compute scalar product of vectors v1 and v2: real*8 function scalar(v1,v2,n) implicit none integer i, n real*8 v1(*), v2(*) scalar=0.d0 do i=1,n scalar=scalar+v1(i)*v2(i) enddo end function !------------------------------------------------------------------- ! compute norm of vector: real*8 function norm(x,n) implicit none integer i, n real*8 x(*) norm=0.d0 do i=1,n norm=norm+x(i)**2 enddo norm=sqrt(norm) end function !------------------------------------------------------------------- subroutine rot_trisec(tr,v1,v2,v3) implicit none real*8 tr(3),v1(3),v2(3),v3(3) real*8 vrot(3) real*8 rot_ax(3) real*8 cos_phi,sin_phi ! evaluate cos(-phi) and sin(-phi), where phi is the angle between ! tr and (1,0,0) cos_phi=tr(1) sin_phi=dsqrt(tr(2)**2+tr(3)**2) if (sin_phi.lt.1.0d-12) then return endif ! determine rotational axis rot_ax(1) = 0.0d0 rot_ax(2) = tr(3) rot_ax(3) = -tr(2) ! normalize rot_ax=rot_ax/sin_phi ! now the rotation can be done using Rodrigues' rotation formula ! v'=v*cos(p) + (k x v)sin(p) + k (k*v) (1-cos(p)) ! for v=tr k*v vanishes by construction: ! check that the rotation does what it should call rodrigues(vrot,tr,rot_ax,cos_phi,sin_phi) if (dsqrt(vrot(2)**2+vrot(3)**2).gt.1.0d-12) then write(6,*) "ERROR: BROKEN TRISECTOR" stop endif tr=vrot call rodrigues(vrot,v1,rot_ax,cos_phi,sin_phi) v1=vrot call rodrigues(vrot,v2,rot_ax,cos_phi,sin_phi) v2=vrot call rodrigues(vrot,v3,rot_ax,cos_phi,sin_phi) v3=vrot end subroutine !------------------------------------------------------------------- subroutine rodrigues(vrot,v,axis,cos_phi,sin_phi) implicit none real*8 vrot(3),v(3),axis(3) real*8 cos_phi,sin_phi real*8 ortho(3) call xprod(ortho,axis,v) vrot = v*cos_phi + ortho*sin_phi > + axis*scalar(axis,v,3)*(1-cos_phi) end subroutine !------------------------------------------------------------------- real*8 function get_ang(v,xaxis,yaxis) implicit none ! get normalized [0:2pi) angle from vectors in the yz plane real*8 v(3),xaxis(3),yaxis(3) real*8 phi real*8 pi parameter (pi=3.141592653589793d0) phi=atan2(scalar(yaxis,v,3),scalar(xaxis,v,3)) if (phi.lt.0.0d0) then phi=2*pi+phi endif get_ang=phi end function end subroutine cart2int